Investigating spatial resolutions of imagery for intertidal sediment characterization using geostatistics

Abstract To investigate bio-chemical processes of intertidal sediments, variations in sediment properties such as moisture content, mud content, and chlorophyll a content need to be understood. Remote sensing has been an efficient alternative to traditional data collection methods for such properties. Yet, with the availability of various types of useful sensors, choosing a suitable spatial resolution is challenging, especially that each type has its own cost, availability, and data specifications. This paper investigates the losses in spatial information of sediment properties on the Molenplaat, an intertidal flat on the Western-Scheldt estuary, upon the use of various resolutions. This was carried out using a synergy between remote sensing and geostatistics. The results showed that for the Molenplaat, chlorophyll a content can be well represented by low to medium resolutions. Yet, for moisture and mud content, spatial structures would be lost upon any decrease of resolution from a 4 m×4 m pixel size.

[1]  Peter M. Atkinson,et al.  Geostatistics and remote sensing , 1998 .

[2]  Peter M. Atkinson,et al.  Exploring the relation between spatial structure and wavelength: implications for sampling reflectance in the field , 1999 .

[3]  Kenji Omasa,et al.  Estimation of vegetation parameter for modeling soil erosion using linear Spectral Mixture Analysis of Landsat ETM data , 2007 .

[4]  James R. Carr,et al.  Spectral and textural classification of single and multiple band digital images , 1996 .

[5]  Daphne van der Wal,et al.  Spatial Synchrony in Intertidal Benthic Algal Biomass in Temperate Coastal and Estuarine Ecosystems , 2010, Ecosystems.

[6]  C. Heip,et al.  Benthic community structure and sediment processes on an intertidal flat: results from the ECOFLAT project , 2001 .

[7]  Rodney M. Forster,et al.  Imaging spectroscopy as a tool to study sediment characteristics on a tidal sandbank in the Westerschelde , 2006 .

[8]  J. Townshend The spatial resolving power of earth resources satellites , 1980 .

[9]  F. Baret,et al.  Quantifying spatial heterogeneity at the landscape scale using variogram models , 2006 .

[10]  Gill Valentine,et al.  Key Methods in Geography , 2003 .

[11]  William V. Harper,et al.  Practical geostatistics 2000 , 2000 .

[12]  C. Honeywill,et al.  Grazing on intertidal microphytobenthos by macrofauna: is pheophorbide a a useful marker? , 2002 .

[13]  Michael Schmidt,et al.  Geostatistical interpolation of SLC-off Landsat ETM+ images , 2009 .

[14]  Daniel J. Repeta,et al.  Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton , 1991 .

[15]  W. Tobler A Computer Movie Simulating Urban Growth in the Detroit Region , 1970 .

[16]  Michael J. Crawley,et al.  The R book , 2022 .

[17]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[18]  N. Cressie The origins of kriging , 1990 .

[19]  K. Clint Slatton,et al.  Modeling temporal variations in multipolarized radar scattering from intertidal coastal wetlands , 2008 .

[20]  E. Ibrahim,et al.  Suitability of spaceborne multispectral data for inter-tidal sediment characterization: A case study , 2011 .

[21]  Freek D. van der Meer,et al.  Remote-sensing image analysis and geostatistics , 2012 .

[22]  Richard J. Murphy,et al.  Field-based remote-sensing for experimental intertidal ecology: Case studies using hyperspatial and hyperspectral data for New South Wales (Australia) , 2008 .

[23]  Koen Sabbe,et al.  Bio-physical characterization of sediment stability in mudflats using remote sensing: A laboratory experiment , 2011 .

[24]  L. Stal Microphytobenthos as a biogeomorphological force in intertidal sediment stabilization , 2010 .

[25]  I. Austen,et al.  The influence of benthic diatoms and invertebrates on the erodibility of an intertidal mudflat, the Danish Wadden Sea , 1999 .

[26]  C. Woodcock,et al.  The factor of scale in remote sensing , 1987 .

[27]  Giles M. Foody,et al.  Thematic labelling from hyperspectral remotely sensed imagery: trade-offs in image properties , 2004 .

[28]  C. Woodcock,et al.  Autocorrelation and regularization in digital images. II. Simple image models , 1989 .

[29]  A. McBratney,et al.  Choosing functions for semi‐variograms of soil properties and fitting them to sampling estimates , 1986 .

[30]  Mario Chica-Olmo,et al.  Computing geostatistical image texture for remotely sensed data classification , 2000 .

[31]  Isobel Clark,et al.  Regularization of a semivariogram , 1977 .

[32]  X. F. Zhang,et al.  On the weighted least-squares method for fitting a semivariogram model , 1995 .

[33]  C. Woodcock,et al.  Autocorrelation and regularization in digital images. I. Basic theory , 1988 .

[34]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[35]  J. C. McGrew,et al.  An Introduction to Statistical Problem Solving in Geography , 1993 .

[36]  Helen Mitchener,et al.  Erosion of mud/sand mixtures , 1996 .

[37]  Peter M. Atkinson,et al.  Defining an optimal size of support for remote sensing investigations , 1995, IEEE Trans. Geosci. Remote. Sens..

[38]  C. Woodcock,et al.  The use of variograms in remote sensing: I , 1988 .

[39]  Paul J. Curran,et al.  Remote sensing: Using the spatial domain , 2001, Environmental and Ecological Statistics.

[40]  P. Atkinson,et al.  Spatial Scale Problems and Geostatistical Solutions: A Review , 2000 .

[41]  C. Duarte,et al.  Submerged versus air-exposed intertidal macrophyte productivity: from physiological to community-level assessments , 2005 .

[42]  Additional studies of forest classification accuracy as influenced by multispectral scanner spatial resolution , 1976 .

[43]  David A. Landgrebe,et al.  Signal Theory Methods in Multispectral Remote Sensing , 2003 .

[44]  R. Reese Geostatistics for Environmental Scientists , 2001 .

[45]  Harold E. Lockwood,et al.  Remote sensing and digital image processing , 1982 .

[46]  D. Sims,et al.  Optimum pixel size for hyperspectral studies of ecosystem function in southern California chaparral and grassland , 2003 .