Recursive identification for Wiener systems using Gaussian inputs

The recursive algorithms are given for identifying the single-input single-output Wiener system which consists of a moving average type linear subsystem followed by a static nonparametric nonlinearity. The input is defined to be a sequence of mutually independent Gaussian random variables. The estimates for coefficients of the linear subsystem as well as for f(v) at any v are proved to converge to the true values with probability one. A numerical example is given, justifying the theoretical analysis. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society

[1]  E. Bai Frequency domain identification of Hammerstein models , 2002 .

[2]  Wlodzimierz Greblicki,et al.  Recursive identification of Wiener systems , 2001 .

[3]  R. E. Kearney,et al.  A new algorithm for the identification of multiple input Wiener systems , 2004, Biological Cybernetics.

[4]  Michel Loève,et al.  Probability Theory I , 1977 .

[5]  Han-Fu Chen,et al.  Identification and Stochastic Adaptive Control , 1991 .

[6]  Wlodzimierz Greblicki,et al.  Nonparametric approach to Wiener system identification , 1997 .

[7]  Jozef Vörös Parameter identification of Wiener systems with discontinuous nonlinearities , 2001, Syst. Control. Lett..

[8]  Han-Fu Chen,et al.  Pathwise convergence of recursive identification algorithms for Hammerstein systems , 2004, IEEE Transactions on Automatic Control.

[9]  Jozef Vörös,et al.  Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones , 2003, IEEE Trans. Autom. Control..

[10]  Z. Hasiewicz Identification of a linear system observed through zero-memory non-linearity , 1987 .

[11]  Wlodzimierz Greblicki,et al.  Stochastic approximation in nonparametric identification of Hammerstein systems , 2002, IEEE Trans. Autom. Control..

[12]  W. R. Cluett,et al.  A new approach to the identification of pH processes based on the Wiener model , 1995 .

[13]  T. Wigren Convergence analysis of recursive identification algorithms based on the nonlinear Wiener model , 1994, IEEE Trans. Autom. Control..

[14]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[15]  M. J. Korenberg,et al.  The identification of nonlinear biological systems: Wiener and Hammerstein cascade models , 1986, Biological Cybernetics.

[16]  Han-Fu Chen,et al.  Recursive identification for Wiener model with discontinuous piece-wise linear function , 2006, IEEE Transactions on Automatic Control.

[17]  M. Verhaegen,et al.  Identifying MIMO Hammerstein systems in the context of subspace model identification methods , 1996 .

[18]  Yucai Zhu,et al.  Distillation column identification for control using Wiener model , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[19]  Xiao-Li Hu,et al.  Strong consistence of recursive identification for Wiener systems , 2005, Autom..

[20]  Liuping Wang,et al.  Identification of time-varying pH processes using sinusoidal signals , 2005, Autom..

[21]  W. R. Cluett,et al.  Identification of Wiener-type nonlinear systems in a noisy environment , 1997 .

[22]  Han-Fu Chen Stochastic approximation and its applications , 2002 .

[23]  Winson Taam,et al.  Nonlinear System Analysis and Identification From Random Data , 1991 .