Tunable enhanced Goos–Hänchen shift of light beam reflected from graphene-based hyperbolic metamaterials

The tunable and enhanced Goos–Hänchen (GH) shift for TM-polarized reflected beam from the graphene-based hyperbolic metamaterials (GHMM) is theoretically investigated. It is demonstrated that the lateral shift of the reflected beam can be tunable by Fermi energy and thickness of dielectric, and the largest GH shifts can be hundreds of wavelengths due to the enhanced effect by the GHMM. The minimum reflected angle (Brewster angle) moves to larger angle of incidence with the Fermi energy and thickness of dielectric increasing. Numerical simulation results for Gaussian incident beams coincide with the theoretical results from the stationary-phase method. The GH shift from the GHMM, maybe, open a new way for photoelectronic device application in future.

[1]  Chun-Fang Li,et al.  Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects. , 2003, Physical review letters.

[2]  S. Wen,et al.  Electrically Tunable Goos–Hänchen Shift of Light Beam Reflected From a Graphene-on-Dielectric Surface , 2013, IEEE Photonics Journal.

[3]  S. Wen,et al.  Electrically controlled Goos-Hänchen shift of a light beam reflected from the metal-insulator-semiconductor structure. , 2013, Optics express.

[4]  Igor I. Smolyaninov,et al.  Hyperbolic Metamaterials , 2018 .

[5]  Yang Liu,et al.  Tunable electron wave filter and Goos–Hänchen shift in asymmetric graphene double magnetic barrier structures , 2013 .

[6]  Randy Knize,et al.  Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber , 2010 .

[7]  Z. Jacob,et al.  Quantum nanophotonics using hyperbolic metamaterials , 2012, 1204.5529.

[8]  Fan Zhang,et al.  Guided modes in graphene waveguides , 2009 .

[9]  Tony F. Heinz,et al.  Observation of an electrically tunable band gap in trilayer graphene , 2011, 1105.4658.

[10]  S. R. Entezar,et al.  Tunable enhanced Goos–Hänchen shift in one-dimensional photonic crystals containing graphene monolayers , 2015 .

[11]  Ke Xu,et al.  High-responsivity graphene/silicon-heterostructure waveguide photodetectors , 2013, Nature Photonics.

[12]  P. Berman,et al.  Goos-Hänchen shift in negatively refractive media. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  F. J. Garcia-Vidal,et al.  Edge and waveguide terahertz surface plasmon modes in graphene microribbons , 2011, 1107.5787.

[14]  Zhenhua Ni,et al.  Broadband graphene polarizer , 2011 .

[15]  Hai‐feng Zhang,et al.  Dual-gated tunable absorption in graphene-based hyperbolic metamaterial , 2015 .

[16]  Antoine Moreau,et al.  Goos-Hänchen effect in the gaps of photonic crystals. , 2003, Optics letters.

[17]  Peter Nordlander,et al.  Graphene-antenna sandwich photodetector. , 2012, Nano letters.

[18]  S. Wen,et al.  Negative and positive Goos–Hänchen shifts of a light beam transmitted from an indefinite medium slab , 2007 .

[19]  F. Goos,et al.  Ein neuer und fundamentaler Versuch zur Totalreflexion , 1947 .

[20]  Renxia Ning,et al.  Tunable angle absorption of hyperbolic metamaterials based on plasma photonic crystals , 2016 .

[21]  Jianguo Tian,et al.  Experimental observation of a giant Goos-Hänchen shift in graphene using a beam splitter scanning method. , 2014, Optics letters.

[22]  Jin Au Kong,et al.  Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability , 2002 .

[23]  Lei Gao,et al.  Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites. , 2009, Optics express.

[24]  Shuangchun Wen,et al.  Critical coupling with graphene-based hyperbolic metamaterials , 2014, Scientific Reports.

[25]  Svend-Age Biehs,et al.  Hyperbolic metamaterials as an analog of a blackbody in the near field. , 2011, Physical review letters.

[26]  Gate-dependent Pseudospin Mixing in Graphene/boron Nitride Moire Superlattices , 2014, 1405.2032.

[27]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.