Formulation and Solution for the Direct and Inverse Kinematics Problems for Mechanisms and Mechatronics Systems

The formulation of a kinematic analysis problem often leads to a set of nonlinear equations. There are a variety of both numerical and algebraic techniques available to solve such systems of equations, and to give bounds on the number of solutions. In this chapter, the formulations of the direct and inverse kinematics of the most important mechanisms used today are reviewed, along with a variety of solution techniques. The reviewed solution methods include polynomial continuation, Grobner basis, and resultants. The relative merits of these techniques are discussed, and different problem formulations are compared.

[1]  D. N. Bernshtein The number of roots of a system of equations , 1975 .

[2]  J. Maurice Rojas,et al.  An optimal condition for determining the exact number of roots of a polynomial system , 1991, ISSAC '91.

[3]  B. Roth,et al.  Synthesis of Path-Generating Mechanisms by Numerical Methods , 1963 .

[4]  Constantinos Mavroidis,et al.  Analysis of Overconstrained Mechanisms , 1995 .

[5]  Ronald Cools,et al.  Polynomial homotopy continuation: a portable Ada software package , 1996 .

[6]  Hong Y. Lee,et al.  Displacement analysis of the general spatial 7-link 7R mechanism , 1988 .

[7]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[8]  George Salmon Lessons introductory to the modern higher algebra , 1885 .

[9]  Deepak Kapur,et al.  Sparsity considerations in Dixon resultants , 1996, STOC '96.

[10]  M. Husty An algorithm for solving the direct kinematics of general Stewart-Gough platforms , 1996 .

[11]  John F. Canny,et al.  A practical method for the sparse resultant , 1993, ISSAC '93.

[12]  Bruce W. Char,et al.  First Leaves: A Tutorial Introduction to Maple V , 1992 .

[13]  A. L. Dixon On a Form of the Eliminant of Two Quantics , 1908 .

[14]  Jean-Pierre Merlet,et al.  Computational Kinematics ’95 , 1995 .

[15]  Charles W. Wampler FORWARD DISPLACEMENT ANALYSIS OF GENERAL SIX-IN-PARALLEL SPS (STEWART) PLATFORM MANIPULATORS USING SOMA COORDINATES , 1996 .

[16]  Ioannis Z. Emiris,et al.  Sparse elimination and applications in kinematics , 1994 .

[17]  Charles W. Wampler,et al.  ISOTROPIC COORDINATES , CIRCULARITY , AND BEZOUT NUMBERS : PLANAR KINEMATICS FROM A NEW PERSPECTIVE , 1996 .

[18]  Dinesh Manocha,et al.  Efficient inverse kinematics for general 6R manipulators , 1994, IEEE Trans. Robotics Autom..

[19]  J. Faugère,et al.  Combinatorial classes of parallel manipulators , 1995 .

[20]  J. Verschelde,et al.  Homotopies exploiting Newton polytopes for solving sparse polynomial systems , 1994 .

[21]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[22]  F. S. Macaulay,et al.  The Algebraic Theory of Modular Systems , 1972 .

[23]  B. Sturmfels,et al.  Multigraded Resultants of Sylvester Type , 1994 .

[24]  有本 卓,et al.  Robotics research : the Fifth International Symposium , 1990 .

[25]  B. Donald,et al.  Symbolic and Numerical Computation for Artificial Intelligence , 1997 .

[26]  Stephen Wolfram,et al.  Mathematica: a system for doing mathematics by computer (2nd ed.) , 1991 .

[27]  Bernard Mourrain,et al.  The 40 “generic” positions of a parallel robot , 1993, ISSAC '93.

[28]  A. Morgan,et al.  Numerical Continuation Methods for Solving Polynomial Systems Arising in Kinematics , 1990 .

[29]  A. L. Dixon The Eliminant of Three Quantics in two Independent Variables , 1909 .

[30]  Bruno Buchberger,et al.  A theoretical basis for the reduction of polynomials to canonical forms , 1976, SIGS.

[31]  A. H. Soni,et al.  Mechanism synthesis and analysis , 1981 .

[32]  B. Roth,et al.  Solving Polynomial Systems for the Kinematic Analysis and Synthesis of Mechanisms and Robot Manipulators , 1995 .

[33]  A. Morgan,et al.  Complete Solution of the Nine-Point Path Synthesis Problem for Four-Bar Linkages , 1992 .

[34]  Gene H. Golub,et al.  Matrix computations , 1983 .

[35]  M. Raghavan The Stewart platform of general geometry has 40 configurations , 1993 .

[36]  A. Khovanskii Newton polyhedra and the genus of complete intersections , 1978 .

[37]  A. Morgan,et al.  Solving the Kinematics of the Most General Six- and Five-Degree-of-Freedom Manipulators by Continuation Methods , 1985 .