Comparison of Cu-BTC and zeolite 13X for adsorbent based CO2 separation

Abstract A series of sorption isotherms of CO 2 , CH 4 and N 2 of a metal organic framework (Cu-BTC) were measured at 0 to 15 bar and at 25 and 105  ∘ C. Cu-BTC showed much higher working capacity than the benchmark zeolite 13X in pressure swing adsorption at 25  ∘ C, and higher CO 2 /N 2 and CO 2 /CH 4 selectivities at a higher pressure range (>1.0 bar) with lower ene rgy requirement for regeneration. Cu-BTC was stable in O 2 at 25  ∘ C. The CO 2 adsorption capacity declined after water sorption.

[1]  A. Matzger,et al.  Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. , 2008, Journal of the American Chemical Society.

[2]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[3]  S. Kaskel,et al.  Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2 , 2004 .

[4]  C. Serre,et al.  Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. , 2005, Journal of the American Chemical Society.

[5]  R. Gorte,et al.  Calorimetric Heats of Adsorption and Adsorption Isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on NaX, H-ZSM-5, and Na-ZSM-5 Zeolites , 1996 .

[6]  Mark D. Allendorf,et al.  The Interaction of Water with MOF-5 Simulated by Molecular Dynamics , 2006 .

[7]  Alírio E. Rodrigues,et al.  Metal Organic Framework Adsorbent for Biogas Upgrading , 2008 .

[8]  Krista S. Walton,et al.  Effect of open metal sites on adsorption of polar and nonpolar molecules in metal-organic framework Cu-BTC. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[9]  P. Harlick,et al.  Applications of Pore-Expanded Mesoporous Silica. 2. Development of a High-Capacity, Water-Tolerant Adsorbent for CO2 , 2005 .

[10]  Qing Min Wang,et al.  Metallo-organic molecular sieve for gas separation and purification , 2002 .

[11]  Sukumar Devotta,et al.  Monoethanol Amine Modified Zeolite 13X for CO2 Adsorption at Different Temperatures , 2007 .

[12]  D. Zhao,et al.  Synthesis, morphology control, and properties of porous metal–organic coordination polymers , 2003 .

[13]  Michael Hirscher,et al.  Hydrogen Physisorption in Metal–Organic Porous Crystals , 2005 .

[14]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[15]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[16]  Chongli Zhong,et al.  Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[17]  Alírio E. Rodrigues,et al.  Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures , 2004 .

[18]  Omar M Yaghi,et al.  Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[19]  R. T. Yang,et al.  Gas adsorption and storage in metal-organic framework MOF-177. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[20]  L. Heroux,et al.  Argon adsorption on Cu3(benzene-1,3,5-tricarboxylate)2(H2O)3 metal-organic framework. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[21]  R. T. Yang,et al.  Hydrogen storage in metal‐organic and covalent‐organic frameworks by spillover , 2008 .

[22]  Randall Q Snurr,et al.  Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. , 2006, The journal of physical chemistry. B.