Towards the Diversity of Sensitive Attributes in k-Anonymity
暂无分享,去创建一个
[1] ASHWIN MACHANAVAJJHALA,et al. L-diversity: privacy beyond k-anonymity , 2006, 22nd International Conference on Data Engineering (ICDE'06).
[2] Rathindra Sarathy,et al. Security of random data perturbation methods , 1999, TODS.
[3] Josep Domingo-Ferrer,et al. Practical Data-Oriented Microaggregation for Statistical Disclosure Control , 2002, IEEE Trans. Knowl. Data Eng..
[4] C. Skinner,et al. Disclosure control for census microdata , 1994 .
[5] S. Reiss,et al. Data-swapping: A technique for disclosure control , 1982 .
[6] Vijay S. Iyengar,et al. Transforming data to satisfy privacy constraints , 2002, KDD.
[7] Chris Clifton,et al. Privacy-preserving k-means clustering over vertically partitioned data , 2003, KDD '03.
[8] Roberto J. Bayardo,et al. Data privacy through optimal k-anonymization , 2005, 21st International Conference on Data Engineering (ICDE'05).
[9] Michael Cohen,et al. Sensitive Micro Data Protection Using Latin Hypercube Sampling Technique , 2002, Inference Control in Statistical Databases.
[10] Osmar R. Zaïane,et al. Achieving Privacy Preservation when Sharing Data for Clustering , 2004, Secure Data Management.
[11] Jay-J. Kim. A METHOD FOR LIMITING DISCLOSURE IN MICRODATA BASED ON RANDOM NOISE AND , 2002 .
[12] Ashwin Machanavajjhala,et al. l-Diversity: Privacy Beyond k-Anonymity , 2006, ICDE.
[13] Latanya Sweeney,et al. Achieving k-Anonymity Privacy Protection Using Generalization and Suppression , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..