A generalized Newton method for a class of discrete-time linear complementarity systems

Abstract In this paper, we propose a generalized Newton method for solving a class of discrete-time linear complementarity systems consisting of a system of linear equations and a linear complementarity constraints with a Z-matrix. We obtain a complete characterization of the least element solution of a linear complementarity problem with a Z-matrix that a solution is the least element solution if and only if the principal submatrix corresponding to the nonzero components of the solution is an M-matrix. We present a Newton method for solving a linear complementarity problem with a Z-matrix. We propose a generalized Newton method for solving the discrete-time linear complementarity system where the linear complementarity problem constraint is solved by the proposed Newton method. Under suitable conditions, we show that the generalized Newton method converges globally and finds a solution in finitely many iterations. Preliminary numerical results show the efficiency of the proposed method.

[1]  R. Chandrasekaran,et al.  A Special Case of the Complementary Pivot Problem , 1969 .

[2]  Jong-Shi Pang,et al.  Semicopositive linear complementarity systems , 2007 .

[3]  Olvi L. Mangasarian,et al.  Linear complementarity problems solvable by A single linear program , 1976, Math. Program..

[4]  Xiaojun Chen,et al.  Newton iterations in implicit time-stepping scheme for differential linear complementarity systems , 2013, Math. Program..

[5]  Xiaojun Chen,et al.  Implicit solution function of P0 and Z matrix linear complementarity constraints , 2011, Math. Program..

[6]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[7]  Boris T. Polyak,et al.  Newton's method and its use in optimization , 2007, Eur. J. Oper. Res..

[8]  Christoph Reisinger,et al.  On the Use of Policy Iteration as an Easy Way of Pricing American Options , 2010, SIAM J. Financial Math..

[9]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[10]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[11]  Luigi Brugnano,et al.  Iterative Solution of Piecewise Linear Systems , 2007, SIAM J. Sci. Comput..

[12]  Christian Kanzow,et al.  Inexact semismooth Newton methods for large-scale complementarity problems , 2004, Optim. Methods Softw..

[13]  W. P. M. H. Heemels,et al.  The Complementarity Class of Hybrid Dynamical Systems , 2003, Eur. J. Control.

[14]  Michael C. Ferris,et al.  Engineering and Economic Applications of Complementarity Problems , 1997, SIAM Rev..

[15]  I. Konnov Equilibrium Models and Variational Inequalities , 2013 .

[16]  W. P. M. H. Heemels,et al.  Linear Complementarity Systems , 2000, SIAM J. Appl. Math..

[17]  Xiaojun Chen,et al.  A Parallel Iterative Algorithm for Differential Linear Complementarity Problems , 2017, SIAM J. Sci. Comput..

[18]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[19]  M. Kanat Camlibel,et al.  Convergence of Time-Stepping Schemes for Passive and Extended Linear Complementarity Systems , 2009, SIAM J. Numer. Anal..

[20]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[21]  Vincenzo Casulli,et al.  A high‐resolution wetting and drying algorithm for free‐surface hydrodynamics , 2009 .

[22]  Jong-Shi Pang,et al.  Linear Complementarity Systems: Zeno States , 2005, SIAM J. Control. Optim..

[23]  Jong-Shi Pang,et al.  Differential variational inequalities , 2008, Math. Program..

[24]  Zhe Sun,et al.  A damped semismooth Newton method for the Brugnano–Casulli piecewise linear system , 2015 .

[25]  Hasnaa Zidani,et al.  Some Convergence Results for Howard's Algorithm , 2009, SIAM J. Numer. Anal..

[26]  Andreas Fischer,et al.  On finite termination of an iterative method for linear complementarity problems , 1996, Math. Program..

[27]  Christoph Reisinger,et al.  A Penalty Method for the Numerical Solution of Hamilton-Jacobi-Bellman (HJB) Equations in Finance , 2011, SIAM J. Numer. Anal..

[28]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[29]  Jong-Shi Pang,et al.  Strongly Regular Differential Variational Systems , 2007, IEEE Transactions on Automatic Control.