The boundary method and general auction for optimal mass transportation and Wasserstein distance computation

[1]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[2]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[3]  Andrew V. Goldberg,et al.  Finding minimum-cost circulations by canceling negative cycles , 1989, JACM.

[4]  R. Chartrand,et al.  A Gradient Descent Solution to the Monge-Kantorovich Problem , 2009 .

[5]  J. A. Cuesta-Albertos,et al.  A characterization for the solution of the Monge--Kantorovich mass transference problem , 1993 .

[6]  R. Gomory,et al.  A Primal Method for the Assignment and Transportation Problems , 1964 .

[7]  Jean-David Benamou,et al.  A Numerical Method to solve Optimal Transport Problems with Coulomb Cost , 2015 .

[8]  D. R. Fulkerson,et al.  An Out-of-Kilter Method for Minimal-Cost Flow Problems , 1960 .

[9]  G. Carlier,et al.  A continuous theory of traffic congestion and Wardrop equilibria , 2012 .

[10]  Wilfrid Gangbo,et al.  Solution of a Model Boltzmann Equation via Steepest Descent in the 2-Wasserstein Metric , 2004 .

[11]  L. Caffarelli,et al.  Weak solutions of one inverse problem in geometric optics , 2008 .

[12]  Gabriel Peyré,et al.  Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..

[13]  G. Buttazzo,et al.  Optimal-transport formulation of electronic density-functional theory , 2012, 1205.4514.

[14]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[15]  Boualem Khouider,et al.  An efficient numerical algorithm for the L2 optimal transport problem with applications to image processing , 2010, 1009.6039.

[16]  L. Caffarelli,et al.  On the Numerical Solution of the Problem of Reflector Design with Given Far-Field Scattering Data , 1999 .

[17]  Lei Zhu,et al.  An Image Morphing Technique Based on Optimal Mass Preserving Mapping , 2007, IEEE Transactions on Image Processing.

[18]  Yann Gousseau,et al.  Constrained Sparse Texture Synthesis , 2013, SSVM.

[19]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[20]  J. F. Williams,et al.  MOVING MESH GENERATION USING THE PARABOLIC MONGE–AMPÈRE EQUATION∗ , 2008 .

[21]  G. Carlier A general existence result for the principal-agent problem with adverse selection , 2001 .

[22]  Erwin Zehe,et al.  Series distance – an intuitive metric to quantify hydrograph similarity in terms of occurrence, amplitude and timing of hydrological events , 2011 .

[23]  S. Haker,et al.  Optimal mass transport and image registration , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[24]  Adam M. Oberman,et al.  Fast finite difference solvers for singular solutions of the elliptic Monge-Ampère equation , 2010, J. Comput. Phys..

[25]  L. Kantorovich On a Problem of Monge , 2006 .

[26]  Allen R. Tannenbaum,et al.  An Efficient Numerical Method for the Solution of the L2 Optimal Mass Transfer Problem , 2010, SIAM J. Sci. Comput..

[27]  Giuseppe Buttazzo Three Optimization Problems in Mass Transportation Theory , 2006 .

[28]  L. Kantorovich On the Translocation of Masses , 2006 .

[29]  Pierre Seppecher,et al.  Mathématiques/Mathematics Shape optimization solutions via Monge-Kantorovich equation , 1997 .

[30]  M. Muskulus Distance-based analysis of dynamical systems and time series by optimal transport , 2010 .

[31]  A. Galichon,et al.  Matching with Trade-Offs: Revealed Preferences Over Competing Characteristics , 2009, 2102.12811.

[32]  Luca Dieci,et al.  The boundary method for semi-discrete optimal transport partitions and Wasserstein distance computation , 2017, J. Comput. Appl. Math..

[33]  Robert E. Tarjan,et al.  Dynamic trees as search trees via euler tours, applied to the network simplex algorithm , 1997, Math. Program..

[34]  A. Galichon,et al.  Cupid’s Invisible Hand: Social Surplus and Identification in Matching Models , 2015, 2106.02371.

[35]  Panos M. Pardalos,et al.  Handbook of Optimization in Telecommunications , 2006 .

[36]  Angelo Iollo,et al.  Advection modes by optimal mass transfer. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  David L. Jensen,et al.  On the computational behavior of a polynomial-time network flow algorithm , 1992, Math. Program..

[38]  James B. Orlin,et al.  A polynomial time primal network simplex algorithm for minimum cost flows , 1996, SODA '96.

[39]  Luca Dieci,et al.  General auction method for real-valued optimal transport , 2017, ArXiv.

[40]  M. J. P. Cullen,et al.  A comparison of numerical solutions to the Eady frontogenesis problem , 2008 .

[41]  Alessio Figalli,et al.  When is multidimensional screening a convex program? , 2009, J. Econ. Theory.

[42]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[43]  P. Chiappori,et al.  Transition to nestedness in multi- to one-dimensional optimal transport , 2018, European journal of applied mathematics.

[44]  Gabriele Steidl,et al.  Dynamic optimal transport with mixed boundary condition for color image processing , 2015, 2015 International Conference on Sampling Theory and Applications (SampTA).

[45]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[46]  Péter Kovács,et al.  Minimum-cost flow algorithms: an experimental evaluation , 2015, Optim. Methods Softw..

[47]  J. Barrett,et al.  A MIXED FORMULATION OF THE MONGE-KANTOROVICH EQUATIONS , 2007 .

[48]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[49]  N. Trudinger,et al.  Regularity of Potential Functions of the Optimal Transportation Problem , 2005 .

[50]  Michael Muskulus,et al.  Fluctuations and determinism of respiratory impedance in asthma and chronic obstructive pulmonary disease. , 2010, Journal of applied physiology.

[51]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[52]  A. Iollo,et al.  Numerical solution of the Monge-Kantorovich problem by Picard iterations , 2014 .

[53]  Haibin Ling,et al.  An Efficient Earth Mover's Distance Algorithm for Robust Histogram Comparison , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Aditya Undurti,et al.  Planning under uncertainty and constraints for teams of autonomous agents , 2011 .

[55]  L. Rüschendorf,et al.  On Optimal Multivariate Couplings , 1997 .

[56]  Steven Haker,et al.  Minimizing Flows for the Monge-Kantorovich Problem , 2003, SIAM J. Math. Anal..

[57]  Yann Brenier,et al.  The Monge–Kantorovitch mass transfer and its computational fluid mechanics formulation , 2002 .

[58]  Adam M. Oberman,et al.  Numerical solution of the Optimal Transportation problem using the Monge-Ampère equation , 2012, J. Comput. Phys..

[59]  M. Cullen,et al.  An Extended Lagrangian Theory of Semi-Geostrophic Frontogenesis , 1984 .

[60]  Andreas Daffertshofer,et al.  Functional similarities and distance properties , 2009, Journal of Neuroscience Methods.

[61]  R. Moeckel,et al.  Measuring the distance between time series , 1997 .

[62]  Dimitri P. Bertsekas,et al.  Network optimization : continuous and discrete models , 1998 .

[63]  M. Iri A NEW METHOD OF SOLVING TRANSPORTATION· NETWORK PROBLEMS , 1960 .

[64]  Dimitri P. Bertsekas,et al.  A generic auction algorithm for the minimum cost network flow problem , 1993, Comput. Optim. Appl..

[65]  Paul Tseng,et al.  Relaxation Methods for Minimum Cost Ordinary and Generalized Network Flow Problems , 1988, Oper. Res..

[66]  M. Muskulus,et al.  Wasserstein distances in the analysis of time series and dynamical systems , 2011 .

[67]  Nathan Michael,et al.  From selfish auctioning to incentivized marketing , 2014, Auton. Robots.

[68]  Mathias Beiglböck,et al.  Model-independent bounds for option prices—a mass transport approach , 2011, Finance Stochastics.

[69]  L. Ambrosio,et al.  Existence and stability results in the L 1 theory of optimal transportation , 2003 .

[70]  Guillaume Carlier,et al.  Optimal Transportation and Economic Applications , 2010 .

[71]  Ludger Rüschendorf,et al.  Monge – Kantorovich transportation problem and optimal couplings , 2006 .

[72]  D. Bertsekas,et al.  The auction algorithm for the transportation problem , 1989 .

[73]  Arthur Cayley,et al.  The Collected Mathematical Papers: On Monge's “Mémoire sur la théorie des déblais et des remblais” , 2009 .

[74]  Jean-David Benamou,et al.  Augmented Lagrangian methods for transport optimization, Mean-Field Games and degenerate PDEs , 2014 .

[75]  Alexandr Andoni,et al.  Parallel algorithms for geometric graph problems , 2013, STOC.

[76]  Mikhail Feldman Growth of a sandpile around an obstacle , 1999 .

[77]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[78]  L. Rüschendorf,et al.  Numerical and analytical results for the transportation problem of Monge-Kantorovich , 2000 .

[79]  J. Benamou NUMERICAL RESOLUTION OF AN \UNBALANCED" MASS TRANSPORT PROBLEM , 2003 .

[80]  Esteban G. Tabak,et al.  Data‐Driven Optimal Transport , 2016 .

[81]  Gui-Song Xia,et al.  Static and Dynamic Texture Mixing Using Optimal Transport , 2013, SSVM.

[82]  C. L. Monma,et al.  A primal algorithm for finding minimum-cost flows in capacitated networks with applications , 1982, The Bell System Technical Journal.

[83]  Julien Rabin,et al.  Wasserstein Barycenter and Its Application to Texture Mixing , 2011, SSVM.

[84]  G. Carlier,et al.  Matching for teams , 2010 .

[85]  D. R. Fulkerson,et al.  Solving a Transportation Problem , 1956 .

[86]  Guillaume Carlier,et al.  Optimal Transport and Cournot-Nash Equilibria , 2012, Math. Oper. Res..

[87]  A. Galichon,et al.  A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options , 2014, 1401.3921.

[88]  U. Frisch,et al.  A reconstruction of the initial conditions of the Universe by optimal mass transportation , 2001, Nature.

[89]  Stanley Osher,et al.  Fast Algorithms for Earth Mover's Distance Based on Optimal Transport and L1 Type Regularization I , 2016 .

[90]  C. Villani Topics in Optimal Transportation , 2003 .

[91]  G. Loeper,et al.  Numerical Analysis/Partial Differential Equations Numerical solution of the Monge-Ampère equation by a Newton's algorithm , 2005 .

[92]  Jie Wang,et al.  An Efficient Method for Constructing Underwater Sensor Barriers , 2011, J. Commun..

[93]  Piotr K. Smolarkiewicz,et al.  A Monge-Ampère enhancement for semi-Lagrangian methods , 2011 .

[94]  L. Rüschendorf FréChet-Bounds and Their Applications , 1991 .

[95]  Adam M. Oberman,et al.  Two Numerical Methods for the elliptic Monge-Ampère equation , 2010 .

[96]  Cristian E. Gutiérrez,et al.  The Monge―Ampère Equation , 2001 .

[97]  Lei Zhu,et al.  Image morphing based on mutual information and optimal mass transport , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..