The packing measure of self-affine carpets

[1]  T. Kamae A characterization of self-affine functions , 1986 .

[2]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[3]  P. A. P. Moran,et al.  Additive functions of intervals and Hausdorff measure , 1946, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  C. Tricot,et al.  Packing regularity of sets in n-space , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  C. Bandt Self-similar sets 3. Constructions with sofic systems , 1989 .

[6]  W. Parry Intrinsic Markov chains , 1964 .

[7]  N. Kôno On self-affine functions , 1986 .

[8]  Curtis T. McMullen,et al.  The Hausdorff dimension of general Sierpiński carpets , 1984, Nagoya Mathematical Journal.

[9]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[10]  B. Weiss Subshifts of finite type and sofic systems , 1973 .

[11]  T. Bedford On Weierstrass-like functions and random recurrent sets , 1989, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  D. Hardin,et al.  Dimensions associated with recurrent self-similar sets , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  C. Tricot Two definitions of fractional dimension , 1982, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  Mike Boyle,et al.  A note on minimal covers for sofic systems , 1985 .

[15]  Yuval Peres,et al.  The self-affine carpets of McMullen and Bedford have infinite Hausdorff measure , 1994, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  C. Tricot,et al.  Packing measure, and its evaluation for a Brownian path , 1985 .

[17]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[18]  Steven P. Lalley,et al.  Hausdorff and box dimensions of certain self-affine fractals , 1992 .