Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields

This paper considers interpolation on a lattice of covariance-based Gaussian Random Field models (Geostatistics models) using Gaussian Markov Random Fields (GMRFs) (conditional autoregression models). Two methods for estimating the GMRF parameters are considered. One generalises maximum likelihood for complete data, and the other ensures a better correspondence between fitted and theoretical correlations for higher lags. The methods can be used both for spatial and spatio-temporal data. Some different cross-validation methods for model choice are compared. The predictive ability of the GMRF is demonstrated by a simulation study, and an example using a real image is considered.

[1]  Fionn Murtagh,et al.  Image Processing and Data Analysis - The Multiscale Approach , 1998 .

[2]  H. Rue,et al.  Fitting Gaussian Markov Random Fields to Gaussian Fields , 2002 .

[3]  R. J. Bhansali,et al.  Inverse Correlations for Multiple Time Series and Gaussian Random Fields and Measures of Their Linear Determinism , 2005 .

[4]  R. J. Martin Leverage, influence and residuals in regression models when observations are correlated , 1992 .

[5]  P. Pfeifer,et al.  A Three-Stage Iterative Procedure for Space-Time Modeling , 1980 .

[6]  Luigi Ippoliti,et al.  Adjusted Maximum Likelihood and Pseudo-Likelihood Estimation for Noisy Gaussian Markov Random Fields , 2002 .

[7]  Anil K. Jain,et al.  Markov random fields : theory and application , 1993 .

[8]  N. Balram,et al.  Noncausal Gauss Markov random fields: Parameter structure and estimation , 1993, IEEE Trans. Inf. Theory.

[9]  Hans R. Künsch,et al.  Intrinsic autoregressions and related models on the two-dimensional lattice , 1987 .

[10]  Noel A Cressie,et al.  A comparison of geostatistical methodologies used to estimate snow water equivalent , 1996 .

[11]  E. J. Hannan,et al.  Multiple time series , 1970 .

[12]  Anil K. Jain,et al.  Random field models in image analysis , 1989 .

[13]  J. Besag,et al.  On the estimation and testing of spatial interaction in Gaussian lattice processes , 1975 .

[14]  Fionn Murtagh,et al.  Image processing and data analysis , 1998 .

[15]  N. Cressie,et al.  Classes of nonseparable, spatio-temporal stationary covariance functions , 1999 .

[16]  R. J. Martin Exact maximum likelihood for incomplete data from a correlated gaussian process , 1984 .

[17]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[18]  R. J. Martin A subclass of lattice processes applied to a problem in planar sampling , 1979 .

[19]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .