Applications of tensor functions to the formulation of yield criteria for anisotropic materials

Abstract Yielding of anisotropic materials can be characterized by yield criteria which are scalar-valued functions of the stress tensor and of material tensors, for instance, of rank two or four, characterizing the anisotropic properties of the material. Because of the requirement of invariance, a yield criterion can be expressed as a single-valued function of the integrity basis. In finding an integrity basis involving the stress tensor and material tensors, the constitutive equations are first formulated based on the tensor function theory. Since the plastic work characterizes the yield process, we read from this scalar expression the essential invariants to formulate a yield criterion. Some examples for practical use are discussed in detail.

[1]  A. Wineman,et al.  Material symmetry restrictions on constitutive equations , 1964 .

[2]  A. Phillips,et al.  Yield surfaces and loading surfaces of aluminum and brass: An experimental investigation at room and elevated temperatures , 1985 .

[3]  Über die Konvexität von Fließkörpern isotroper und anisotroper Stoffe , 1979 .

[4]  Elementarer Ansatz zur Beschreibung des orthotropen kompressiblen plastischen Fließens unter Berücksichtigung des Bauschinger-Effekts , 1978 .

[5]  W. J. O'donnell,et al.  Plastic analysis of perforated plates for orthotropic yield criteria , 1975 .

[6]  A. Sawczuk,et al.  A yield criterion for perforated sheets , 1981 .

[7]  J. Betten,et al.  Einfluß der plastischen Kompressibilität und des Strength-Differential-Effektes auf das Fließverhalten von Sinter- und Polymerwerkstoffen , 1984 .

[8]  G. F. Smith,et al.  Integrity bases for a symmetric tensor and a vector — The crystal classes , 1963 .

[9]  Josef Betten,et al.  Integrity basis for a second-order and a fourth-order tensor , 1982 .

[10]  J. Boehler,et al.  Failure Criteria for Unidirectional Fiber-Reinforced Composites under Confining Pressure , 1982 .

[11]  J. Boehler,et al.  Application of representation theorems to describe yielding of transversely isotropic solids , 1976 .

[12]  T. Lehmann Zu einigen nicht-linearen Stoffgesetzen für plastische Formänderungen , 1972 .

[13]  A.J.M. Spencer,et al.  Theory of invariants , 1971 .

[14]  A. Phillips The Foundations of Thermoplasticity - Experiments and Theory , 1974 .

[15]  G. F. Smith On the yield condition for anisotropic materials , 1962 .

[16]  Plastische Anisotropie und Bauschinger-Effekt; allgemeine Formulierung und Vergleich mit experimentell ermittelten Fließortkurven , 1976 .

[17]  J. P. Boehler,et al.  On yielding of oriented solids , 1977 .

[18]  Irreducible invariants of fourth-order tensors , 1987 .

[19]  Josef Betten Elementare Tensorrechnung für Ingenieure , 1977 .

[20]  Zur Modifikation des Spannungsdeviators , 1977 .