Understanding and manipulating AAV-glycan interactions

[1]  R. Kumar,et al.  Transfection of a human alpha-(1,3)fucosyltransferase gene into Chinese hamster ovary cells. Complications arise from activation of endogenous alpha-(1,3)fucosyltransferases. , 1990, The Journal of biological chemistry.

[2]  A. Kidd,et al.  Adenovirus Type 37 Uses Sialic Acid as a Cellular Receptor , 2000, Journal of Virology.

[3]  C. Longhi,et al.  Involvement of gangliosides in the interaction between BK virus and Vero cells , 2005, Archives of Virology.

[4]  Fang Fang,et al.  Novel Pandemic Influenza A(H1N1) Viruses Are Potently Inhibited by DAS181, a Sialidase Fusion Protein , 2009, PloS one.

[5]  J. Chiorini,et al.  Structurally Mapping the Diverse Phenotype of Adeno-Associated Virus Serotype 4 , 2006, Journal of Virology.

[6]  A. Srivastava,et al.  Nucleotide sequence and organization of the adeno-associated virus 2 genome , 1983, Journal of virology.

[7]  A. Klug,et al.  Physical principles in the construction of regular viruses. , 1962, Cold Spring Harbor symposia on quantitative biology.

[8]  M. Nonnenmacher,et al.  Effect of inhibition of dynein function and microtubule-altering drugs on AAV2 transduction. , 2007, Virology.

[9]  J. Rabinowitz,et al.  Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. , 2008, Molecular therapy : the journal of the American Society of Gene Therapy.

[10]  E. Holmes,et al.  Host Species Barriers to Influenza Virus Infections , 2006, Science.

[11]  T. Conlon,et al.  Mutational Analysis of the Adeno-Associated Virus Type 2 (AAV2) Capsid Gene and Construction of AAV2 Vectors with Altered Tropism , 2000, Journal of Virology.

[12]  D. Schaffer,et al.  Enhanced Sialic Acid-Dependent Endocytosis Explains the Increased Efficiency of Infection of Airway Epithelia by a Novel Adeno-Associated Virus , 2011, Journal of Virology.

[13]  Aravind Srinivasan,et al.  Glycans as receptors for influenza pathogenesis , 2010, Glycoconjugate Journal.

[14]  J. Engelhardt,et al.  rAAV2 traffics through both the late and the recycling endosomes in a dose-dependent fashion. , 2006, Molecular therapy : the journal of the American Society of Gene Therapy.

[15]  James M. Allen,et al.  Adeno-Associated Virus Type 6 (AAV6) Vectors Mediate Efficient Transduction of Airway Epithelial Cells in Mouse Lungs Compared to That of AAV2 Vectors , 2001, Journal of Virology.

[16]  D. Grimm,et al.  DNA helicase‐mediated packaging of adeno‐associated virus type 2 genomes into preformed capsids , 2001, The EMBO journal.

[17]  J. Grieger,et al.  Single Amino Acid Changes Can Influence Titer, Heparin Binding, and Tissue Tropism in Different Adeno-Associated Virus Serotypes , 2006, Journal of Virology.

[18]  T. Stehle,et al.  Attachment and cell entry of mammalian orthoreovirus. , 2006, Current topics in microbiology and immunology.

[19]  I. Goldstein,et al.  The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(alpha 2-6)Gal/GalNAc sequence. , 1987, The Journal of biological chemistry.

[20]  D. Mccarty Self-complementary AAV vectors; advances and applications. , 2008, Molecular therapy : the journal of the American Society of Gene Therapy.

[21]  J. Marth,et al.  Immune regulation by the ST6Gal sialyltransferase. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Gabriele Neumann,et al.  Host Range Restriction and Pathogenicity in the Context of Influenza Pandemic , 2006, Emerging infectious diseases.

[23]  Giovanni Di Pasquale,et al.  Identification of PDGFR as a receptor for AAV-5 transduction , 2003, Nature Medicine.

[24]  K. High The gene therapy journey for hemophilia: are we there yet? , 2012, Blood.

[25]  J. Chiorini,et al.  Adeno-Associated Virus Serotype 4 (AAV4) and AAV5 Both Require Sialic Acid Binding for Hemagglutination and Efficient Transduction but Differ in Sialic Acid Linkage Specificity , 2001, Journal of Virology.

[26]  J. Engelhardt,et al.  Distinct Transduction Difference Between Adeno-Associated Virus Type 1 and Type 6 Vectors in Human Polarized Airway Epithelia , 2012, Gene Therapy.

[27]  R. McKenna,et al.  Host-Selected Amino Acid Changes at the Sialic Acid Binding Pocket of the Parvovirus Capsid Modulate Cell Binding Affinity and Determine Virulence , 2006, Journal of Virology.

[28]  P. Hermonat,et al.  The packaging capacity of adeno‐associated virus (AAV) and the potential for wild‐type‐plus AAV gene therapy vectors , 1997, FEBS letters.

[29]  Theo M Bestebroer,et al.  Airborne Transmission of Influenza A/H5N1 Virus Between Ferrets , 2012, Science.

[30]  D. Dormont,et al.  Identification of interaction domains of the prion protein with its 37‐kDa/67‐kDa laminin receptor , 2001, The EMBO journal.

[31]  D. Schaffer,et al.  Directed evolution of adeno-associated virus to an infectious respiratory virus , 2009, Proceedings of the National Academy of Sciences.

[32]  A. Varki,et al.  The sialome--far more than the sum of its parts. , 2010, Omics : a journal of integrative biology.

[33]  J. Kleinschmidt,et al.  Mutational Analysis of Narrow Pores at the Fivefold Symmetry Axes of Adeno-Associated Virus Type 2 Capsids Reveals a Dual Role in Genome Packaging and Activation of Phospholipase A2 Activity , 2005, Journal of Virology.

[34]  M. S. Chapman,et al.  The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J. Gentsch,et al.  Inhibition of reovirus type 3 binding to host cells by sialylated glycoproteins is mediated through the viral attachment protein , 1987, Journal of virology.

[36]  A. Choi,et al.  The alpha-anomeric form of sialic acid is the minimal receptor determinant recognized by reovirus. , 1989, Virology.

[37]  P. Stanley,et al.  Translocation across golgi vesicle membranes: A CHO glycosylation mutant deficient in CMP-sialic acid transport , 1984, Cell.

[38]  Torsten Schwede,et al.  BIOINFORMATICS Bioinformatics Advance Access published November 12, 2005 The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling , 2022 .

[39]  M G Rossmann,et al.  Functional implications of the structure of the murine parvovirus, minute virus of mice. , 1998, Structure.

[40]  M. Agbandje-McKenna,et al.  AAV capsid structure and cell interactions. , 2011, Methods in molecular biology.

[41]  B. Casto,et al.  Adenovirus-Associated Defective Virus Particles , 1965, Science.

[42]  U. Bantel‐Schaal,et al.  Adeno-associated virus type 5 exploits two different entry pathways in human embryo fibroblasts. , 2009, The Journal of general virology.

[43]  David E. Swayne,et al.  Isolation and Characterization of Avian Influenza Viruses, Including Highly Pathogenic H5N1, from Poultry in Live Bird Markets in Hanoi, Vietnam, in 2001 , 2005, Journal of Virology.

[44]  B. Smedsrød,et al.  Scavenger endothelial cells of vertebrates: A nonperipheral leukocyte system for high-capacity elimination of waste macromolecules , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Lili Wang,et al.  Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[46]  A. Klug,et al.  Structure of Turnip Yellow Mosaic Virus , 1957, Nature.

[47]  R. Samulski,et al.  Surface Loop Dynamics in Adeno-Associated Virus Capsid Assembly , 2008, Journal of Virology.

[48]  D. Schaffer,et al.  Directed evolution of adeno-associated virus yields enhanced gene delivery vectors , 2006, Nature Biotechnology.

[49]  T. Stehle,et al.  The Polyomaviridae: Contributions of virus structure to our understanding of virus receptors and infectious entry , 2009, Virology.

[50]  G. Leroux-Roels,et al.  The arginine-rich carboxy-terminal domain of the hepatitis B virus core protein mediates attachment of nucleocapsids to cell-surface-expressed heparan sulfate. , 2005, The Journal of general virology.

[51]  K. Berns,et al.  Nucleotide sequence of the inverted terminal repetition in adeno-associated virus DNA , 1980, Journal of virology.

[52]  M. Nonnenmacher,et al.  Adeno-associated virus 2 infection requires endocytosis through the CLIC/GEEC pathway. , 2011, Cell host & microbe.

[53]  Sheikh Abdul Rahman,et al.  Heparan Sulfate Proteoglycans Are Required for Cellular Binding of the Hepatitis E Virus ORF2 Capsid Protein and for Viral Infection , 2009, Journal of Virology.

[54]  D. Duan,et al.  Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus. , 2000, The Journal of clinical investigation.

[55]  M. Finn,et al.  Tyrosine cross-linking reveals interfacial dynamics in adeno-associated viral capsids during infection. , 2012, ACS chemical biology.

[56]  Ajit Varki,et al.  Genetically Altered Mice with Different Sialyltransferase Deficiencies Show Tissue-specific Alterations in Sialylation and Sialic Acid 9-O-Acetylation* 210 , 2002, The Journal of Biological Chemistry.

[57]  James M. Wilson,et al.  The AAV9 receptor and its modification to improve in vivo lung gene transfer in mice. , 2011, The Journal of clinical investigation.

[58]  Edward A. White,et al.  Evaluation and optimization of the administration of recombinant adeno-associated viral vectors (serotypes 2/1, 2/2, 2/rh8, 2/9, and 2/rh10) by convection-enhanced delivery to the striatum. , 2011, Human gene therapy.

[59]  P. Stanley,et al.  Control of carbohydrate processing: the lec1A CHO mutation results in partial loss of N-acetylglucosaminyltransferase I activity , 1985, Molecular and cellular biology.

[60]  R. Jackson,et al.  Molecular design and modeling of protein-heparin interactions. , 1991, Methods in enzymology.

[61]  H. Nomoto,et al.  Frontal affinity chromatography of ovalbumin glycoasparagines on a concanavalin A-sepharose column. A quantitative study of the binding specificity of the lectin. , 1985, The Journal of biological chemistry.

[62]  J. Engelhardt,et al.  Intracellular trafficking of adeno-associated viral vectors , 2005, Gene Therapy.

[63]  Gabriele Neumann,et al.  Experimental adaptation of an influenza H5 haemagglutinin (HA) confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets , 2012, Nature.

[64]  A. M. Hutson,et al.  Norwalk Virus-Like Particle Hemagglutination by Binding to H Histo-Blood Group Antigens , 2003, Journal of Virology.

[65]  L. Govindasamy,et al.  Engineering liver-detargeted AAV9 vectors for cardiac and musculoskeletal gene transfer. , 2011, Molecular therapy : the journal of the American Society of Gene Therapy.

[66]  O. Danos,et al.  Intracellular Trafficking of Adeno-Associated Virus Vectors: Routing to the Late Endosomal Compartment and Proteasome Degradation , 2001, Journal of Virology.

[67]  R. Cummings,et al.  The immobilized leukoagglutinin from the seeds of Maackia amurensis binds with high affinity to complex-type Asn-linked oligosaccharides containing terminal sialic acid-linked alpha-2,3 to penultimate galactose residues. , 1988, The Journal of biological chemistry.

[68]  P. Stewart,et al.  Adenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo , 2008, Proceedings of the National Academy of Sciences.

[69]  Jian Du,et al.  Metabolic glycoengineering: sialic acid and beyond. , 2009, Glycobiology.

[70]  R. Samulski,et al.  Infectious Entry Pathway of Adeno-Associated Virus and Adeno-Associated Virus Vectors , 2000, Journal of Virology.

[71]  James M. Wilson,et al.  Naturally occurring singleton residues in AAV capsid impact vector performance and illustrate structural constraints , 2009, Gene Therapy.

[72]  R. Colonno,et al.  The major and minor group receptor families contain all but one human rhinovirus serotype. , 1991, Virology.

[73]  Wadih Arap,et al.  Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors , 2003, Nature Biotechnology.

[74]  R. Parker,et al.  A potential role of distinctively delayed blood clearance of recombinant adeno-associated virus serotype 9 in robust cardiac transduction. , 2011, Molecular therapy : the journal of the American Society of Gene Therapy.

[75]  G. Herrler,et al.  Structural and Functional Analysis of the Surface Protein of Human Coronavirus OC43 , 1993, Virology.

[76]  M. S. Chapman,et al.  The structure of adeno-associated virus serotype 3B (AAV-3B): insights into receptor binding and immune evasion. , 2010, Virology.

[77]  R. Linhardt,et al.  Structural characterization of human liver heparan sulfate. , 2005, Biochimica et biophysica acta.

[78]  A. Asokan,et al.  Glycan Binding Avidity Determines the Systemic Fate of Adeno-Associated Virus Type 9 , 2012, Journal of Virology.

[79]  Shangzhen Zhou,et al.  Mutations on the External Surfaces of Adeno-AssociatedVirus Type 2 Capsids That Affect Transduction andNeutralization , 2006, Journal of Virology.

[80]  K. Iwabuchi,et al.  Hepatocyte Growth Factor Receptor Is a Coreceptor for Adeno-Associated Virus Type 2 Infection , 2005, Journal of Virology.

[81]  K. Dimock,et al.  Enterovirus 70 Binds to Different Glycoconjugates Containing α2,3-Linked Sialic Acid on Different Cell Lines , 2005, Journal of Virology.

[82]  Robert J. Linhardt,et al.  Cellular Binding of Hepatitis C Virus Envelope Glycoprotein E2 Requires Cell Surface Heparan Sulfate* , 2003, Journal of Biological Chemistry.

[83]  Jonghan Kim,et al.  Rapid and Efficient Clearance of Blood-borne Virus by Liver Sinusoidal Endothelium , 2011, PLoS pathogens.

[84]  S. Crennell,et al.  Probing the Sialic Acid Binding Site of the Hemagglutinin-Neuraminidase of Newcastle Disease Virus: Identification of Key Amino Acids Involved in Cell Binding, Catalysis, and Fusion , 2002, Journal of Virology.

[85]  J. Grieger,et al.  Production and characterization of adeno-associated viral vectors , 2006, Nature Protocols.

[86]  J. Kleinschmidt,et al.  A viral assembly factor promotes AAV2 capsid formation in the nucleolus , 2010, Proceedings of the National Academy of Sciences.

[87]  D. Shukla,et al.  Viral entry mechanisms: cellular and viral mediators of herpes simplex virus entry , 2009, The FEBS journal.

[88]  T. Baker,et al.  Structure of Adeno-Associated Virus Type 4 , 2005, Journal of Virology.

[89]  W. Shou,et al.  Role of cellular FKBP52 protein in intracellular trafficking of recombinant adeno-associated virus 2 vectors. , 2006, Virology.

[90]  Norman E. Davey,et al.  Properties of the Adeno-Associated Virus Assembly-Activating Protein , 2012, Journal of Virology.

[91]  S. Werner,et al.  Potentiation of fibroblast growth factor activity by synthetic heparin oligosaccharide glycodendrimers. , 2007, Chemistry & biology.

[92]  N. Muzyczka,et al.  The adeno-associated virus (AAV) Rep protein acts as both a repressor and an activator to regulate AAV transcription during a productive infection , 1997, Journal of virology.

[93]  J. Chiorini,et al.  Secreted and Transmembrane Mucins Inhibit Gene Transfer with AAV4 More Efficiently than AAV5* , 2002, The Journal of Biological Chemistry.

[94]  L. Svensson Group C rotavirus requires sialic acid for erythrocyte and cell receptor binding , 1992, Journal of virology.

[95]  M. S. Chapman,et al.  Canine parvovirus capsid structure, analyzed at 2.9 A resolution. , 1996, Journal of molecular biology.

[96]  Keyun Qing,et al.  Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2 , 1999, Nature Medicine.

[97]  M. Estes,et al.  VLA-2 (alpha2beta1) integrin promotes rotavirus entry into cells but is not necessary for rotavirus attachment. , 2002, Journal of virology.

[98]  D. Caspar Structure of Bushy Stunt Virus , 1956, Nature.

[99]  R. Samulski,et al.  Adeno-associated virus type 2 contains an integrin alpha5beta1 binding domain essential for viral cell entry. , 2006, Journal of virology.

[100]  M. S. Chapman,et al.  Structure of AAV-DJ, a retargeted gene therapy vector: cryo-electron microscopy at 4.5 Å resolution. , 2012, Structure.

[101]  S. Harrison,et al.  Tomato bushy stunt virus at 2.9 Å resolution , 1978, Nature.

[102]  G. Hortin Isolation of glycopeptides containing O-linked oligosaccharides by lectin affinity chromatography on jacalin-agarose. , 1990, Analytical biochemistry.

[103]  D. Schaffer,et al.  Construction of diverse adeno-associated viral libraries for directed evolution of enhanced gene delivery vehicles , 2006, Nature Protocols.

[104]  T. Baker,et al.  Mapping a Neutralizing Epitope onto the Capsid of Adeno-Associated Virus Serotype 8 , 2012, Journal of Virology.

[105]  J. Kornegay,et al.  Widespread muscle expression of an AAV9 human mini-dystrophin vector after intravenous injection in neonatal dystrophin-deficient dogs. , 2010, Molecular therapy : the journal of the American Society of Gene Therapy.

[106]  J. Kleinschmidt,et al.  Adeno-Associated Virus Type 2 Capsids with Externalized VP1/VP2 Trafficking Domains Are Generated prior to Passage through the Cytoplasm and Are Maintained until Uncoating Occurs in the Nucleus , 2006, Journal of Virology.

[107]  L. Schramm,et al.  Sialidase enhances recovery from spinal cord contusion injury , 2010, Proceedings of the National Academy of Sciences.

[108]  David V. Schaffer,et al.  Designer Gene Delivery Vectors: Molecular Engineering and Evolution of Adeno-Associated Viral Vectors for Enhanced Gene Transfer , 2007, Pharmaceutical Research.

[109]  R. Samulski,et al.  Single Amino Acid Modification of Adeno-Associated Virus Capsid Changes Transduction and Humoral Immune Profiles , 2012, Journal of Virology.

[110]  Arun Srivastava,et al.  Impaired Intracellular Trafficking of Adeno-Associated Virus Type 2 Vectors Limits Efficient Transduction of Murine Fibroblasts , 2000, Journal of Virology.

[111]  S. Randell,et al.  Terminal N-Linked Galactose Is the Primary Receptor for Adeno-associated Virus 9* , 2011, The Journal of Biological Chemistry.

[112]  P. Stanley,et al.  Glycomics Profiling of Chinese Hamster Ovary Cell Glycosylation Mutants Reveals N-Glycans of a Novel Size and Complexity* , 2009, The Journal of Biological Chemistry.

[113]  T. Mikkelsen,et al.  System-wide Genomic and Biochemical Comparisons of Sialic Acid Biology Among Primates and Rodents , 2006, Journal of Biological Chemistry.

[114]  N. Muzyczka,et al.  Identification of Amino Acid Residues in the Capsid Proteins of Adeno-Associated Virus Type 2 That Contribute to Heparan Sulfate Proteoglycan Binding † , 2002 .

[115]  J. Massagué,et al.  A single mutation affects both N-acetylglucosaminyltransferase and glucuronosyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[116]  H. Mizukami,et al.  Adeno-associated virus (AAV)-3-based vectors transduce haematopoietic cells not susceptible to transduction with AAV-2-based vectors. , 2000, The Journal of general virology.

[117]  P. Stewart,et al.  Insights into adenovirus host cell interactions from structural studies. , 2009, Virology.

[118]  M. Welsh,et al.  Binding of Adeno-associated Virus Type 5 to 2,3-Linked Sialic Acid Is Required for Gene Transfer* , 2001, The Journal of Biological Chemistry.

[119]  J. Pessin,et al.  Dynamin Is Required for Recombinant Adeno-Associated Virus Type 2 Infection , 1999, Journal of Virology.

[120]  A. Elbein,et al.  Swainsonine: an inhibitor of glycoprotein processing. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[121]  A. M. Hutson,et al.  Norovirus disease: changing epidemiology and host susceptibility factors , 2004, Trends in Microbiology.

[122]  J. Flannery,et al.  AAV mediated GDNF secretion from retinal glia slows down retinal degeneration in a rat model of retinitis pigmentosa. , 2011, Molecular therapy : the journal of the American Society of Gene Therapy.

[123]  David V Schaffer,et al.  The AAV Vector Toolkit: Poised at the Clinical Crossroads. , 2012, Molecular therapy : the journal of the American Society of Gene Therapy.

[124]  A. Srinivasan,et al.  Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin , 2008, Nature Biotechnology.

[125]  K. Yamamoto,et al.  Structural requirements for the binding of oligosaccharides and glycopeptides to immobilized wheat germ agglutinin. , 1981, Biochemistry.

[126]  A. Campos-Neto,et al.  Lectin(s) extracted from seeds of Artocarpus integrifolia (jackfruit): potent and selective stimulator(s) of distinct human T and B cell functions. , 1981, Journal of immunology.

[127]  M. R. Delgado Alvira,et al.  Clades of Adeno-Associated Viruses Are Widely Disseminated in Human Tissues , 2004, Journal of Virology.

[128]  K. High,et al.  Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges , 2011, Nature Reviews Genetics.

[129]  James D. Watson,et al.  Virus Structure: General Principles , 1957 .

[130]  J. Chiorini,et al.  Molecular Characterization of the Heparin-Dependent Transduction Domain on the Capsid of a Novel Adeno-Associated Virus Isolate, AAV(VR-942) , 2008, Journal of Virology.

[131]  D. Duan,et al.  Adeno-associated virus serotype 6 capsid tyrosine-to-phenylalanine mutations improve gene transfer to skeletal muscle. , 2010, Human gene therapy.

[132]  N. D. Di Paolo,et al.  The influence of blood on in vivo adenovirus bio-distribution and transduction. , 2007, Molecular therapy : the journal of the American Society of Gene Therapy.

[133]  Maria Kontou,et al.  Structural Determinants of Tissue Tropism and In Vivo Pathogenicity for the Parvovirus Minute Virus of Mice , 2005, Journal of Virology.

[134]  Jana L Phillips,et al.  Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle , 2010, Nature Biotechnology.

[135]  T. Baker,et al.  Structure of Adeno-Associated Virus Serotype 5 , 2004, Journal of Virology.

[136]  Theresa A. Storm,et al.  Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. , 2006, Molecular therapy : the journal of the American Society of Gene Therapy.

[137]  Samulski,et al.  Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression , 1989, Journal of virology.

[138]  M. S. Chapman,et al.  Adeno-associated virus-2 and its primary cellular receptor--Cryo-EM structure of a heparin complex. , 2009, Virology.

[139]  S. Blomqvist,et al.  Human Rhinovirus 87 and Enterovirus 68 Represent a Unique Serotype with Rhinovirus and Enterovirus Features , 2002, Journal of Clinical Microbiology.

[140]  W. Parks,et al.  Physicochemical Characterization of Adeno-associated Satellite Virus Type 4 and Its Nucleic Acid , 1967, Journal of virology.

[141]  B. Böttcher,et al.  A Conformational Change in the Adeno-Associated Virus Type 2 Capsid Leads to the Exposure of Hidden VP1 N Termini , 2005, Journal of Virology.

[142]  R. McKenna,et al.  Identification of the Sialic Acid Structures Recognized by Minute Virus of Mice and the Role of Binding Affinity in Virulence Adaptation* , 2006, Journal of Biological Chemistry.

[143]  T. Stehle,et al.  Viruses and sialic acids: rules of engagement , 2011, Current Opinion in Structural Biology.

[144]  M. Rossmann,et al.  Interpretation of electron density with stereographic roadmap projections. , 2007, Journal of structural biology.

[145]  J. Paulson,et al.  Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. , 1983, Virology.

[146]  R. Samulski,et al.  Directed evolution of a novel adeno-associated virus (AAV) vector that crosses the seizure-compromised blood-brain barrier (BBB). , 2010, Molecular therapy : the journal of the American Society of Gene Therapy.

[147]  M. Estes,et al.  Initial Interaction of Rotavirus Strains with N-Acetylneuraminic (Sialic) Acid Residues on the Cell Surface Correlates with VP4 Genotype, Not Species of Origin , 2002, Journal of Virology.

[148]  M. Kay,et al.  The 37/67-Kilodalton Laminin Receptor Is a Receptor for Adeno-Associated Virus Serotypes 8, 2, 3, and 9 , 2006, Journal of Virology.

[149]  R. Samulski,et al.  Adeno-associated virus serotypes: vector toolkit for human gene therapy. , 2006, Molecular therapy : the journal of the American Society of Gene Therapy.

[150]  M. Chilosi,et al.  Heparan Sulfate Glycosaminoglycans Are Receptors Sufficient To Mediate the Initial Binding of Adenovirus Types 2 and 5 , 2001, Journal of Virology.

[151]  J. Xie,et al.  Existence of transient functional double-stranded DNA intermediates during recombinant AAV transduction , 2007, Proceedings of the National Academy of Sciences.

[152]  B. Böttcher,et al.  The Assembly-Activating Protein Promotes Capsid Assembly of Different Adeno-Associated Virus Serotypes , 2011, Journal of Virology.

[153]  R. Samulski,et al.  Membrane-Associated Heparan Sulfate Proteoglycan Is a Receptor for Adeno-Associated Virus Type 2 Virions , 1998, Journal of Virology.

[154]  M. Hoggan,et al.  Studies of small DNA viruses found in various adenovirus preparations: physical, biological, and immunological characteristics. , 1966, Proceedings of the National Academy of Sciences of the United States of America.

[155]  B. Byrne,et al.  Structure of Adeno-Associated Virus Serotype 8, a Gene Therapy Vector , 2007, Journal of Virology.

[156]  S. Sanlioglu,et al.  Endocytosis and Nuclear Trafficking of Adeno-Associated Virus Type 2 Are Controlled by Rac1 and Phosphatidylinositol-3 Kinase Activation , 2000, Journal of Virology.

[157]  C. Parrish Structures and functions of parvovirus capsids and the process of cell infection. , 2010, Current topics in microbiology and immunology.

[158]  C. Napoli,et al.  Adenovirus Serotype 5 Hexon Mediates Liver Gene Transfer , 2008, Cell.

[159]  D. Filman,et al.  Three-dimensional structure of poliovirus at 2.9 A resolution. , 1985, Science.

[160]  Edward B. Miller,et al.  Alpha2,3 and alpha2,6 N-linked sialic acids facilitate efficient binding and transduction by adeno-associated virus types 1 and 6. , 2006, Journal of virology.

[161]  M. S. Chapman,et al.  Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B). , 2012, Virology.

[162]  M. Hallek,et al.  The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity. , 2002, The Journal of general virology.

[163]  G. Blix,et al.  Sialic Acids , 1955, Nature.

[164]  J. Grieger,et al.  Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. , 2012, Molecular therapy : the journal of the American Society of Gene Therapy.

[165]  W. Atwood,et al.  Infection of Glial Cells by the Human Polyomavirus JC Is Mediated by an N-Linked Glycoprotein Containing Terminal α(2-6)-Linked Sialic Acids , 1998, Journal of Virology.

[166]  T. Kanda,et al.  Two novel adeno-associated viruses from cynomolgus monkey: pseudotyping characterization of capsid protein. , 2004, Virology.

[167]  J. Wolfe,et al.  Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. , 2006, Molecular therapy : the journal of the American Society of Gene Therapy.

[168]  J. Atkinson,et al.  Binding of measles virus to membrane cofactor protein (CD46): importance of disulfide bonds and N-glycans for the receptor function , 1994, Journal of virology.

[169]  S. Ponnazhagan,et al.  Rescue and replication signals of the adeno-associated virus 2 genome. , 1995, Journal of molecular biology.

[170]  J. Esko,et al.  Accumulation of a Pentasaccharide Terminating in α-N-Acetylglucosamine in an Animal Cell Mutant Defective in Heparan Sulfate Biosynthesis (*) , 1995, The Journal of Biological Chemistry.

[171]  Xianfang Wu,et al.  Hepatitis C Virus Attachment Mediated by Apolipoprotein E Binding to Cell Surface Heparan Sulfate , 2012, Journal of Virology.

[172]  M. Rossmann,et al.  Cryo-electron microscopy studies of empty capsids of human parvovirus B19 complexed with its cellular receptor. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[173]  S. Deutscher,et al.  Mechanism of galactosylation in the Golgi apparatus. A Chinese hamster ovary cell mutant deficient in translocation of UDP-galactose across Golgi vesicle membranes. , 1986, The Journal of biological chemistry.

[174]  John E. Johnson,et al.  Icosahedral RNA virus structure. , 1989, Annual review of biochemistry.

[175]  U. Bantel‐Schaal,et al.  Characterization of the DNA of a defective human parvovirus isolated from a genital site. , 1984, Virology.

[176]  F. Crick,et al.  Structure of Small Viruses , 1956, Nature.

[177]  M. Nonnenmacher,et al.  Intracellular transport of recombinant adeno-associated virus vectors , 2012, Gene Therapy.

[178]  A. Srinivasan,et al.  Quantitative biochemical rationale for differences in transmissibility of 1918 pandemic influenza A viruses , 2008, Proceedings of the National Academy of Sciences.

[179]  R. Crystal,et al.  A Common Mechanism for Cytoplasmic Dynein-Dependent Microtubule Binding Shared among Adeno-Associated Virus and Adenovirus Serotypes , 2006, Journal of Virology.

[180]  J. Chiorini,et al.  Gangliosides Are Essential for Bovine Adeno-Associated Virus Entry , 2006, Journal of Virology.

[181]  T. Baker,et al.  Heparin binding induces conformational changes in Adeno-associated virus serotype 2. , 2009, Journal of structural biology.

[182]  I. Martins,et al.  Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[183]  R. Samulski,et al.  AAV's anatomy: roadmap for optimizing vectors for translational success. , 2010, Current gene therapy.

[184]  M. Weitzman,et al.  Analysis of adeno-associated virus (AAV) wild-type and mutant Rep proteins for their abilities to negatively regulate AAV p5 and p19 mRNA levels , 1994, Journal of virology.

[185]  Lili Wang,et al.  AAV8-mediated hepatic gene transfer in infant rhesus monkeys (Macaca mulatta). , 2011, Molecular therapy : the journal of the American Society of Gene Therapy.

[186]  N. Muzyczka,et al.  Next generation of adeno-associated virus 2 vectors: Point mutations in tyrosines lead to high-efficiency transduction at lower doses , 2008, Proceedings of the National Academy of Sciences.

[187]  John E. Johnson,et al.  PRINCIPLES OF VIRUS STRUCTURE , 1999 .

[188]  Kristin N. Parent,et al.  Structural Characterization of the Dual Glycan Binding Adeno-Associated Virus Serotype 6 , 2010, Journal of Virology.

[189]  C. Schwegmann-Wessels,et al.  Sialic acids as receptor determinants for coronaviruses , 2006, Glycoconjugate Journal.

[190]  T. Flotte,et al.  Clinical gene therapy using recombinant adeno-associated virus vectors , 2008, Gene Therapy.

[191]  F. Chisari,et al.  Human liver chimeric mice provide a model for hepatitis B and C virus infection and treatment. , 2010, The Journal of clinical investigation.

[192]  Thilo Stehle,et al.  Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment , 1994, Nature.

[193]  James M. Wilson,et al.  New recombinant serotypes of AAV vectors. , 2005, Current gene therapy.

[194]  A. Srinivasan,et al.  Determinants of Glycan Receptor Specificity of H2N2 Influenza A Virus Hemagglutinin , 2010, PloS one.

[195]  J. Kleinschmidt,et al.  Identification of a Heparin-Binding Motif on Adeno-Associated Virus Type 2 Capsids , 2003, Journal of Virology.

[196]  J. Esko,et al.  Sulphated and undersulphated heparan sulphate proteoglycans in a Chinese hamster ovary cell mutant defective in N-sulphotransferase. , 1994, The Biochemical journal.

[197]  J. Tomassini,et al.  Biochemical characterization of a glycoprotein required for rhinovirus attachment. , 1989, The Journal of biological chemistry.

[198]  J. Esko,et al.  Chinese Hamster Ovary Cell Mutants Defective in Glycosaminoglycan Assembly and Glucuronosyltransferase I* , 1999, The Journal of Biological Chemistry.

[199]  P. Reier,et al.  Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. , 2004, Molecular therapy : the journal of the American Society of Gene Therapy.

[200]  T. Conlon,et al.  Recombinant Adeno-Associated Virus Serotype 9 Leads to Preferential Cardiac Transduction In Vivo , 2006, Circulation research.

[201]  J. R. Brown,et al.  Enhanced 3-O-sulfation of galactose in Asn-linked glycans and Maackia amurensis lectin binding in a new Chinese hamster ovary cell line. , 2001, Glycobiology.

[202]  Y. Kim,et al.  Inhibition of mucin glycosylation by aryl-N-acetyl-alpha-galactosaminides in human colon cancer cells. , 1989, The Journal of biological chemistry.

[203]  R. Samulski,et al.  Cross-Packaging of a Single Adeno-Associated Virus (AAV) Type 2 Vector Genome into Multiple AAV Serotypes Enables Transduction with Broad Specificity , 2002, Journal of Virology.

[204]  Ming-Sung Tsai,et al.  Differential affinities of Erythrina cristagalli lectin (ECL) toward monosaccharides and polyvalent mammalian structural units , 2007, Glycoconjugate Journal.

[205]  S. Olofsson,et al.  Glycoconjugate glycans as viral receptors , 2005, Annals of medicine.

[206]  F. Hayden,et al.  Sialidase Fusion Protein as a Novel Broad-Spectrum Inhibitor of Influenza Virus Infection , 2006, Antimicrobial Agents and Chemotherapy.

[207]  B. Smedsrød,et al.  Scavenger functions of the liver endothelial cell. , 1990, The Biochemical journal.

[208]  L. Govindasamy,et al.  A dual role of EGFR protein tyrosine kinase signaling in ubiquitination of AAV2 capsids and viral second-strand DNA synthesis. , 2007, Molecular therapy : the journal of the American Society of Gene Therapy.

[209]  J. Grieger,et al.  Generation of novel AAV variants by directed evolution for improved CFTR delivery to human ciliated airway epithelium. , 2009, Molecular therapy : the journal of the American Society of Gene Therapy.

[210]  J. Gentsch,et al.  Differential interaction of reovirus type 3 with sialylated receptor components on animal cells. , 1987, Virology.

[211]  R. Cummings,et al.  Relationship between Golgi architecture and glycoprotein biosynthesis and transport in Chinese hamster ovary cells. , 1989, The Journal of biological chemistry.

[212]  M. Hallek,et al.  Intrinsic phospholipase A2 activity of adeno-associated virus is involved in endosomal escape of incoming particles. , 2011, Virology.

[213]  J. Flannery,et al.  Molecular evolution of adeno-associated virus for enhanced glial gene delivery. , 2009, Molecular therapy : the journal of the American Society of Gene Therapy.

[214]  Mauricio Carrillo-Tripp,et al.  VIPERdb2: an enhanced and web API enabled relational database for structural virology , 2008, Nucleic Acids Res..

[215]  S. Harvey,et al.  Biophysical and Ultrastructural Characterization of Adeno-Associated Virus Capsid Uncoating and Genome Release , 2012, Journal of Virology.

[216]  John G. Flannery,et al.  A Novel Adeno-Associated Viral Variant for Efficient and Selective Intravitreal Transduction of Rat Müller Cells , 2009, PloS one.

[217]  J. Chiorini,et al.  Epidermal growth factor receptor is a co-receptor for adeno-associated virus serotype 6 , 2010, Nature Medicine.

[218]  B. Hub,et al.  Endocytosis of Adeno-Associated Virus Type 5 Leads to Accumulation of Virus Particles in the Golgi Compartment , 2002, Journal of Virology.

[219]  M. S. Chapman,et al.  Structure-function analysis of receptor-binding in adeno-associated virus serotype 6 (AAV-6). , 2011, Virology.