Resolvent Estrada Index - Computational and Mathematical Studies

The resolvent Estrada index of a (non-complete) graph G of order n is defined as EEr = ∑n i=1 ( 1− λi n−1 )−1 , where λ1, λ2, . . . , λn are the eigenvalues of G. Combining computational and mathematical approaches, we establish a number of properties of EEr . In particular, any tree has smaller EEr-value than any unicyclic graph of the same order, and any unicyclic graph has smaller EEr-value than any tricyclic graph of the same order. The trees, unicyclic, bicyclic, and tricyclic graphs with smallest and greatest EEr are determined.

[1]  I. Gutman,et al.  Towards a definition of almost–equienergetic graphs , 2013, Journal of Mathematical Chemistry.

[2]  D. Cvetkovic,et al.  Spectra of graphs : theory and application , 1995 .

[3]  Ernesto Estrada,et al.  The Structure of Complex Networks: Theory and Applications , 2011 .

[4]  J. A. Rodríguez-Velázquez,et al.  Subgraph centrality in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  On Resolvent Estrada Index , 2015 .

[6]  Desmond J. Higham,et al.  Network Properties Revealed through Matrix Functions , 2010, SIAM Rev..

[7]  D. Cvetkovic,et al.  Spectra of Graphs: Theory and Applications , 1997 .

[8]  Ernesto Estrada Characterization of the amino acid contribution to the folding degree of proteins , 2004, Proteins.

[9]  I. Gutman,et al.  EQUIENERGETIC AND ALMOST-EQUIENERGETIC TREES , 2009 .

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  D. Cvetkovic,et al.  An Introduction to the Theory of Graph Spectra: Introduction , 2009 .

[12]  M. Benzi,et al.  Quadrature rule-based bounds for functions of adjacency matrices , 2010 .

[13]  Ernesto Estrada,et al.  Characterization of the folding degree of proteins , 2002, Bioinform..

[14]  Ernesto Estrada Characterization of 3D molecular structure , 2000 .

[15]  I. Gutman,et al.  On Almost-Equienergetic Graphs , 2013 .

[16]  Ernesto Estrada,et al.  Statistical-mechanical approach to subgraph centrality in complex networks , 2007, 0905.4098.