Carbon Nanotubes: Synthesis, Properties, and Applications

This brief review presents a comprehensive outline of the present research status on the fast moving carbon nanotube (CNT) field. It covers a short introduction to the relation between carbon nanotubes, graphite, and other forms of carbon and explains in detail the structure of CNTs. The electronic, electrical, and mechanical properties of CNTs, as well as the most widely used methods for CNT production such as electric arc discharge, laser ablation, and chemical vapor deposition (CVD), are discussed. Some of the CNT applications covered in this review article are: field emission, hydrogen storage, carbon nanotube-based solar cells, and CNT composite materials.

[1]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[2]  M. Terrones Science and Technology of the Twenty-First Century: Synthesis, Properties, and Applications of Carbon Nanotubes , 2003 .

[3]  Frank T. Fisher,et al.  Effects of nanotube waviness on the modulus of nanotube-reinforced polymers , 2002 .

[4]  T. Ichihashi,et al.  Formation of Single-Wall Carbon Nanotubes: Comparison of CO2 Laser Ablation and Nd:YAG Laser Ablation , 1999 .

[5]  Yahachi Saito,et al.  Cathode Ray Tube Lighting Elements with Carbon Nanotube Field Emitters , 1998 .

[6]  Yuegang Zhang,et al.  Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature , 1999 .

[7]  T. Ebbesen,et al.  Mechanism of carbon nanotube formation in the arc discharge. , 1995, Physical review. B, Condensed matter.

[8]  J. Jiao,et al.  Catalytic role of nickel, palladium, and platinum in the formation of carbon nanoclusters , 1994 .

[9]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[10]  Kenichi Iga,et al.  Introduction to Nanotechnology , 2002, Fluorescent Nanodiamonds.

[11]  A. Mukherjee,et al.  Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites , 2003, Nature materials.

[12]  C. R. Martin,et al.  Carbon nanotubule membranes for electrochemical energy storage and production , 1998, Nature.

[13]  C. Poole,et al.  Introduction to Nanotechnology , 2003 .

[14]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[15]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[16]  K. Watson,et al.  Dispersion of single wall carbon nanotubes by in situ polymerization under sonication , 2002 .

[17]  Hari Singh Nalwa,et al.  Encyclopedia of nanoscience and nanotechnology , 2011 .

[18]  Richard Martel,et al.  Electrical transport in doped multiwalled carbon nanotubes , 2001 .

[19]  H. Kataura,et al.  Time period for the growth of single-wall carbon nanotubes in the laser ablation process: evidence from gas dynamic studies and time resolved imaging , 2000 .

[20]  Paul L. McEuen,et al.  Single-Electron Transport in Ropes of Carbon Nanotubes , 1997, Science.

[21]  W. D. de Heer,et al.  A Carbon Nanotube Field-Emission Electron Source , 1995, Science.

[22]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[23]  Eric A. Grulke,et al.  MULTIWALLED CARBON NANOTUBE POLYMER COMPOSITES: SYNTHESIS AND CHARACTERIZATION OF THIN FILMS , 2002 .

[24]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[25]  David L. Carroll,et al.  A Composite from Poly(m‐phenylenevinylene‐co‐2,5‐dioctoxy‐p‐phenylenevinylene) and Carbon Nanotubes: A Novel Material for Molecular Optoelectronics , 1998 .

[26]  P. Ajayan Nanotubes from Carbon. , 1999, Chemical reviews.

[27]  Y. Cho,et al.  Diameter-controlled growth of carbon nanotubes using thermal chemical vapor deposition , 2001 .

[28]  Emmanuel Kymakis,et al.  Single-wall carbon nanotube/conjugated polymer photovoltaic devices , 2002 .

[29]  Riichiro Saito,et al.  Electronic structure of chiral graphene tubules , 1992 .

[30]  Identification of electron donor states in N-doped carbon nanotubes , 2000, cond-mat/0011318.

[31]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[32]  John Robertson,et al.  Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition , 2001 .

[33]  First-principles study of Li-intercalated carbon nanotube ropes , 1999, Physical review letters.

[34]  D. Srivastava,et al.  Carbon nanotubes , 2000 .

[35]  A. Chambers,et al.  Hydrogen Storage in Graphite Nanofibers , 1998 .

[36]  P. Ajayan,et al.  Applications of Carbon Nanotubes , 2001 .

[37]  Richard H. Friend,et al.  Composites of Carbon Nanotubes and Conjugated Polymers for Photovoltaic Devices , 1999 .

[38]  C. Schönenberger,et al.  Sensitivity of single multiwalled carbon nanotubes to the environment , 2003 .

[39]  Carbon nanotubes with single-layer walls , 1995 .

[40]  Chongwu Zhou,et al.  Carbon nanotube field-effect inverters , 2001 .

[41]  L. Forró,et al.  Field emission from carbon nanotubes: perspectives for applications and clues to the emission mechanism , 1999 .

[42]  M. Dresselhaus,et al.  Phonons in carbon nanotubes , 2000 .

[43]  Broughton,et al.  Nanocapillarity in fullerene tubules. , 1992, Physical review letters.

[44]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[45]  Fujita,et al.  Electronic structure of graphene tubules based on C60. , 1992, Physical review. B, Condensed matter.

[46]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[47]  S. Seraphin,et al.  Single-walled carbon nanotubes produced at high yield by mixed catalysts , 1994 .

[48]  Meyya Meyyappan,et al.  Carbon Nanotubes: Science and Applications , 2007 .

[49]  P. Ajayan,et al.  Balance of graphite deposition and multishell carbon nanotube growth in the carbon arc discharge , 1997 .

[50]  M. Siegal,et al.  Synthesis of large arrays of well-aligned carbon nanotubes on glass , 1998, Science.

[51]  Yayi Wei,et al.  Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition , 2001 .

[52]  P. Ajayan,et al.  Growth morphologies during cobalt-catalyzed single-shell carbon nanotube synthesis , 1993 .

[53]  J. P. Zhang,et al.  Controlled production of aligned-nanotube bundles , 1997, Nature.

[54]  Yi Jia,et al.  Double-walled carbon nanotube solar cells. , 2007, Nano letters.

[55]  T. Ichihashi,et al.  Single-wall carbon nanotubes formed by a single laser-beam pulse , 1999 .

[56]  A. Biris,et al.  Morphology of Multi-Walled Carbon Nanotubes Affected by the Thermal Stability of the Catalyst System , 2007 .

[57]  P. Ajayan,et al.  Large-scale synthesis of carbon nanotubes , 1992, Nature.

[58]  E. Siochi,et al.  Electrical properties of single wall carbon nanotube reinforced polyimide composites , 2003 .

[59]  Andrew G. Glen,et al.  APPL , 2001 .

[60]  Jianping Lu,et al.  Carbon nanotubes and nanotube-based nano devices , 1998 .

[61]  J. U. Lee,et al.  Photovoltaic effect in ideal carbon nanotube diodes , 2005 .

[62]  S. Xie,et al.  Large-Scale Synthesis of Aligned Carbon Nanotubes , 1996, Science.

[63]  A. Kulik,et al.  Mechanical properties of carbon nanotubes , 1999 .

[64]  Bingqing Wei,et al.  Processing and properties of carbon nanotubes–nano-SiC ceramic , 1998 .

[65]  Michael A. Wilson,et al.  Nanotechnology: Basic Science and Emerging Technologies , 2002 .

[66]  Steven G. Louie,et al.  Broken symmetry and pseudogaps in ropes of carbon nanotubes , 1998, Nature.

[67]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[68]  Enkeleda Dervishi,et al.  Catalyst excitation by radio frequency for improved carbon nanotubes synthesis , 2006 .

[69]  T. Ebbesen,et al.  Patterns in the bulk growth of carbon nanotubes , 1993 .

[70]  T. Seong,et al.  Growth behavior of carbon nanotubes on Fe-deposited (001) Si substrates , 2001 .

[71]  M. Dresselhaus Burn and Interrogate , 2001, Science.

[72]  Pavel Nikolaev,et al.  Catalytic growth of single-walled manotubes by laser vaporization , 1995 .

[73]  S. Pennycook,et al.  Dynamics of single-wall carbon nanotube synthesis by laser vaporization , 2000 .

[74]  Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer , 2001 .

[75]  Robert P. H. Chang,et al.  A nanotube-based field-emission flat panel display , 1998 .

[76]  Bingqing Wei,et al.  Study on poly(methyl methacrylate)/carbon nanotube composites , 1999 .

[77]  Amlan J. Pal,et al.  Functionalized carbon nanotubes in donor/acceptor-type photovoltaic devices , 2006 .

[78]  P. Ajayan,et al.  Improving conditions towards isolating single-shell carbon nanotubes , 1994 .

[79]  W. K. Maser,et al.  Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.

[80]  Angel Rubio,et al.  Improved Charge Transfer at Carbon Nanotube Electrodes , 1999 .

[81]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[82]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[83]  E. Kymakis,et al.  Carbon nanotube doping of P3HT : PCBM photovoltaic devices , 2008 .

[84]  M. Dresselhaus,et al.  Carbon nanotubes : synthesis, structure, properties, and applications , 2001 .

[85]  Alan M. Cassell,et al.  Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers , 1998, Nature.

[86]  A. Rinzler,et al.  Self-assembly of tubular fullerenes , 1995 .