A survey on signature-based algorithms for computing Gröbner bases

Abstract In 1965 Buchberger introduced an algorithmic approach to compute Grobner bases. Later on, he and many others presented various attempts to improve the computation by removing useless elements a priori. One approach, initiated by Gebauer, Moller, Mora and Traverso in the 1990s, is to keep track of the corresponding syzygies which is related to the topic of this survey: signature-based algorithms for Grobner bases. This area was initiated by Faugere's F5 algorithm in 2002. The general idea of signatures is to keep track of the history of the computation with a minimal overhead and to exploit this information to detect redundant elements. Here we give a summary of the literature on signature-based algorithms and show how to classify known algorithms by 3 different orderings. For this we give translations between different notations and show the relationships (differences and similarities) among many approaches. Moreover, we give a general description of how the idea of signatures is quite natural when performing the reduction process using linear algebra. We hope that this survey would help to outline this field of active research.

[1]  Teo Mora,et al.  Solving Polynomial Equation Systems II: Macaulay's Paradigm and Gröbner Technology , 2005 .

[2]  Jean-Charles Faugère,et al.  Computing loci of rank defects of linear matrices using Gröbner bases and applications to cryptology , 2010, ISSAC.

[3]  Shuhong Gao,et al.  A new incremental algorithm for computing Groebner bases , 2010, ISSAC.

[4]  Martin R. Albrecht,et al.  On the relation between the MXL family of algorithms and Gröbner basis algorithms , 2012, J. Symb. Comput..

[5]  F. S. Macaulay Some Formulæ in Elimination , 1902 .

[6]  Amir Hashemi,et al.  On the use of Buchberger criteria in G2V algorithm for calculating Gröbner bases , 2013, Programming and Computer Software.

[7]  Jean-Charles Faugère,et al.  Gröbner bases of ideals invariant under a commutative group: the non-modular case , 2013, ISSAC '13.

[8]  Bruno Buchberger,et al.  History and Basic Features of the Critical-Pair/Completion Procedure , 1987, J. Symb. Comput..

[9]  Jean Charles Faugère,et al.  A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.

[10]  Michael Kalkbrener,et al.  Converting Bases with the Gröbner Walk , 1997, J. Symb. Comput..

[11]  Amir Hashemi,et al.  Extended F5 criteria , 2010, J. Symb. Comput..

[12]  D. Kapur,et al.  A Completion Procedure for Computing a Canonical Basis for a k-Subalgebra , 1989, Computers and Mathematics.

[13]  Christian Eder,et al.  On The Criteria Of The F5 Algorithm , 2008, 0804.2033.

[14]  Antoine Joux,et al.  Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases , 2003, CRYPTO.

[15]  Roger D. Dellaca Grobner basis algorithms , 2009 .

[16]  A. I. Zobnin Generalization of the F5 algorithm for calculating Gröbner bases for polynomial ideals , 2010, Programming and Computer Software.

[17]  Bruno Buchberger,et al.  A criterion for detecting unnecessary reductions in the construction of Groebner bases , 1979, EUROSAM.

[18]  Shuhong Gao,et al.  A new framework for computing Gröbner bases , 2015, Math. Comput..

[19]  Roberto La Scala,et al.  Computing Toric Ideals , 1999, J. Symb. Comput..

[20]  Michael Brickenstein,et al.  Slimgb: Gröbner bases with slim polynomials , 2010 .

[21]  Martin Kreuzer,et al.  Computational Commutative Algebra 1 , 2000 .

[22]  Rüdiger Gebauer,et al.  On an Installation of Buchberger's Algorithm , 1988, J. Symb. Comput..

[23]  V. V. Galkin Termination of the F5 algorithm , 2014, Programming and Computer Software.

[24]  Bjarke Hammersholt Roune,et al.  Practical Gröbner basis computation , 2012, ISSAC.

[25]  Bruno Buchberger,et al.  Bruno Buchberger's PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal , 2006, J. Symb. Comput..

[26]  V. V. Galkin Simple signature based iterative algorithm for calculation of Gröbner bases , 2013 .

[27]  Jean-Charles Faugère,et al.  Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..

[28]  Rüdiger Gebauer,et al.  Buchberger's algorithm and staggered linear bases , 1986, SYMSAC '86.

[29]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[30]  B. Buchberger Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems , 1970 .

[31]  Magali Bardet,et al.  Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la cryptographie , 2004 .

[32]  Dingkang Wang,et al.  A new proof for the correctness of the F5 algorithm , 2013 .

[33]  Amir Hashemi,et al.  Invariant G2V algorithm for computing SAGBI-Gröbner bases , 2013 .

[34]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[35]  Christian Eder,et al.  Modifying Faug\`ere's F5 Algorithm to ensure termination , 2010, 1006.0318.

[36]  F. S. Macaulay,et al.  The Algebraic Theory of Modular Systems , 1972 .

[37]  Bruno Buchberger,et al.  An improved algorithmic construction of Gröbner-bases for polynomial ideals , 1978, SIGS.

[38]  Jean-Charles Faugère,et al.  On the complexity of computing gröbner bases for quasi-homogeneous systems , 2013, ISSAC '13.

[39]  Yao Sun,et al.  A generalized criterion for signature related Gröbner basis algorithms , 2011, ISSAC '11.

[40]  Christian Eder,et al.  An analysis of inhomogeneous signature-based Gröbner basis computations , 2012, J. Symb. Comput..

[41]  Volker Weispfenning,et al.  Non-Commutative Gröbner Bases in Algebras of Solvable Type , 1990, J. Symb. Comput..

[42]  Jean-Charles Faugère,et al.  Parallel Gaussian elimination for Gröbner bases computations in finite fields , 2010, PASCO.

[43]  Jean-Charles Faugère Algebraic cryptanalysis of HFE using Gröbner bases , 2002 .

[44]  Yupu Hu,et al.  The termination of the F5 algorithm revisited , 2013, ISSAC '13.

[45]  Jean-Charles Faugère,et al.  Solving polynomial systems globally invariant under an action of the symmetric group and application to the equilibria of N vortices in the plane , 2012, ISSAC.

[46]  J. Faugère,et al.  On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations , 2004 .

[47]  Carlo Traverso,et al.  Gröbner bases computation using syzygies , 1992, ISSAC '92.

[48]  Christian Eder,et al.  F5C: A variant of Faugère's F5 algorithm with reduced Gröbner bases , 2009, J. Symb. Comput..

[49]  Amir Hashemi,et al.  Involutive bases algorithm incorporating F5 criterion , 2013, J. Symb. Comput..

[50]  Yao Sun,et al.  The F5 algorithm in Buchberger’s style , 2010, J. Syst. Sci. Complex..

[51]  Shuhong Gao,et al.  New algorithms for computing groebner bases , 2011 .

[52]  Mohab Safey El Din,et al.  Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1, 1): Algorithms and complexity , 2010, J. Symb. Comput..

[53]  G. Greuel,et al.  A Singular Introduction to Commutative Algebra , 2002 .

[54]  Carlo Traverso,et al.  Gröbner Trace Algorithms , 1988, ISSAC.

[55]  Till Stegers,et al.  Faugere's F5 Algorithm Revisited , 2006, IACR Cryptol. ePrint Arch..

[56]  Bruno Buchberger,et al.  A critical-pair/completion algorithm for finitely generated ideals in rings , 1983, Logic and Machines.

[57]  Christian Eder Signature-based algorithms to compute standard bases , 2012 .

[58]  Magali Bardet,et al.  On the Complexity of a Grobner Basis Algorithm , 2005 .

[59]  Yang Zhang,et al.  A signature-based algorithm for computing Gröbner bases in solvable polynomial algebras , 2012, ISSAC.

[60]  Christian Eder,et al.  Signature-based algorithms to compute Gröbner bases , 2011, ISSAC '11.

[61]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[62]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[63]  Nicolas M. Thiéry,et al.  Computing Minimal Generating Sets of Invariant Rings of Permutation Groups with SAGBI-Gröobner Basis , 2001, DM-CCG.

[64]  Christian Eder,et al.  Improving incremental signature-based Gröbner basis algorithms , 2012, ACCA.

[65]  Christian Eder,et al.  Signature rewriting in gröbner basis computation , 2013, ISSAC '13.

[66]  John Perry,et al.  The F5 criterion revised , 2011, J. Symb. Comput..

[67]  Christian Eder A New Attempt On The F5 Criterion , 2008, Comput. Sci. J. Moldova.

[68]  Massimo Caboara,et al.  Computing inhomogeneous Gröbner bases , 2009, J. Symb. Comput..

[69]  Maria Grazia Marinari,et al.  Gröbner bases of ideals defined by functionals with an application to ideals of projective points , 1993, Applicable Algebra in Engineering, Communication and Computing.

[70]  Jee Koh,et al.  On efficient computation of grobner bases , 2008 .

[71]  Jean-Charles Faugère,et al.  Solving systems of polynomial equations with symmetries using SAGBI-Gröbner bases , 2009, ISSAC '09.

[72]  Daniel Lazard,et al.  Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.