A survey on signature-based algorithms for computing Gröbner bases
暂无分享,去创建一个
[1] Teo Mora,et al. Solving Polynomial Equation Systems II: Macaulay's Paradigm and Gröbner Technology , 2005 .
[2] Jean-Charles Faugère,et al. Computing loci of rank defects of linear matrices using Gröbner bases and applications to cryptology , 2010, ISSAC.
[3] Shuhong Gao,et al. A new incremental algorithm for computing Groebner bases , 2010, ISSAC.
[4] Martin R. Albrecht,et al. On the relation between the MXL family of algorithms and Gröbner basis algorithms , 2012, J. Symb. Comput..
[5] F. S. Macaulay. Some Formulæ in Elimination , 1902 .
[6] Amir Hashemi,et al. On the use of Buchberger criteria in G2V algorithm for calculating Gröbner bases , 2013, Programming and Computer Software.
[7] Jean-Charles Faugère,et al. Gröbner bases of ideals invariant under a commutative group: the non-modular case , 2013, ISSAC '13.
[8] Bruno Buchberger,et al. History and Basic Features of the Critical-Pair/Completion Procedure , 1987, J. Symb. Comput..
[9] Jean Charles Faugère,et al. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.
[10] Michael Kalkbrener,et al. Converting Bases with the Gröbner Walk , 1997, J. Symb. Comput..
[11] Amir Hashemi,et al. Extended F5 criteria , 2010, J. Symb. Comput..
[12] D. Kapur,et al. A Completion Procedure for Computing a Canonical Basis for a k-Subalgebra , 1989, Computers and Mathematics.
[13] Christian Eder,et al. On The Criteria Of The F5 Algorithm , 2008, 0804.2033.
[14] Antoine Joux,et al. Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases , 2003, CRYPTO.
[15] Roger D. Dellaca. Grobner basis algorithms , 2009 .
[16] A. I. Zobnin. Generalization of the F5 algorithm for calculating Gröbner bases for polynomial ideals , 2010, Programming and Computer Software.
[17] Bruno Buchberger,et al. A criterion for detecting unnecessary reductions in the construction of Groebner bases , 1979, EUROSAM.
[18] Shuhong Gao,et al. A new framework for computing Gröbner bases , 2015, Math. Comput..
[19] Roberto La Scala,et al. Computing Toric Ideals , 1999, J. Symb. Comput..
[20] Michael Brickenstein,et al. Slimgb: Gröbner bases with slim polynomials , 2010 .
[21] Martin Kreuzer,et al. Computational Commutative Algebra 1 , 2000 .
[22] Rüdiger Gebauer,et al. On an Installation of Buchberger's Algorithm , 1988, J. Symb. Comput..
[23] V. V. Galkin. Termination of the F5 algorithm , 2014, Programming and Computer Software.
[24] Bjarke Hammersholt Roune,et al. Practical Gröbner basis computation , 2012, ISSAC.
[25] Bruno Buchberger,et al. Bruno Buchberger's PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal , 2006, J. Symb. Comput..
[26] V. V. Galkin. Simple signature based iterative algorithm for calculation of Gröbner bases , 2013 .
[27] Jean-Charles Faugère,et al. Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..
[28] Rüdiger Gebauer,et al. Buchberger's algorithm and staggered linear bases , 1986, SYMSAC '86.
[29] B. Buchberger,et al. Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .
[30] B. Buchberger. Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems , 1970 .
[31] Magali Bardet,et al. Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la cryptographie , 2004 .
[32] Dingkang Wang,et al. A new proof for the correctness of the F5 algorithm , 2013 .
[33] Amir Hashemi,et al. Invariant G2V algorithm for computing SAGBI-Gröbner bases , 2013 .
[34] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[35] Christian Eder,et al. Modifying Faug\`ere's F5 Algorithm to ensure termination , 2010, 1006.0318.
[36] F. S. Macaulay,et al. The Algebraic Theory of Modular Systems , 1972 .
[37] Bruno Buchberger,et al. An improved algorithmic construction of Gröbner-bases for polynomial ideals , 1978, SIGS.
[38] Jean-Charles Faugère,et al. On the complexity of computing gröbner bases for quasi-homogeneous systems , 2013, ISSAC '13.
[39] Yao Sun,et al. A generalized criterion for signature related Gröbner basis algorithms , 2011, ISSAC '11.
[40] Christian Eder,et al. An analysis of inhomogeneous signature-based Gröbner basis computations , 2012, J. Symb. Comput..
[41] Volker Weispfenning,et al. Non-Commutative Gröbner Bases in Algebras of Solvable Type , 1990, J. Symb. Comput..
[42] Jean-Charles Faugère,et al. Parallel Gaussian elimination for Gröbner bases computations in finite fields , 2010, PASCO.
[43] Jean-Charles Faugère. Algebraic cryptanalysis of HFE using Gröbner bases , 2002 .
[44] Yupu Hu,et al. The termination of the F5 algorithm revisited , 2013, ISSAC '13.
[45] Jean-Charles Faugère,et al. Solving polynomial systems globally invariant under an action of the symmetric group and application to the equilibria of N vortices in the plane , 2012, ISSAC.
[46] J. Faugère,et al. On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations , 2004 .
[47] Carlo Traverso,et al. Gröbner bases computation using syzygies , 1992, ISSAC '92.
[48] Christian Eder,et al. F5C: A variant of Faugère's F5 algorithm with reduced Gröbner bases , 2009, J. Symb. Comput..
[49] Amir Hashemi,et al. Involutive bases algorithm incorporating F5 criterion , 2013, J. Symb. Comput..
[50] Yao Sun,et al. The F5 algorithm in Buchberger’s style , 2010, J. Syst. Sci. Complex..
[51] Shuhong Gao,et al. New algorithms for computing groebner bases , 2011 .
[52] Mohab Safey El Din,et al. Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1, 1): Algorithms and complexity , 2010, J. Symb. Comput..
[53] G. Greuel,et al. A Singular Introduction to Commutative Algebra , 2002 .
[54] Carlo Traverso,et al. Gröbner Trace Algorithms , 1988, ISSAC.
[55] Till Stegers,et al. Faugere's F5 Algorithm Revisited , 2006, IACR Cryptol. ePrint Arch..
[56] Bruno Buchberger,et al. A critical-pair/completion algorithm for finitely generated ideals in rings , 1983, Logic and Machines.
[57] Christian Eder. Signature-based algorithms to compute standard bases , 2012 .
[58] Magali Bardet,et al. On the Complexity of a Grobner Basis Algorithm , 2005 .
[59] Yang Zhang,et al. A signature-based algorithm for computing Gröbner bases in solvable polynomial algebras , 2012, ISSAC.
[60] Christian Eder,et al. Signature-based algorithms to compute Gröbner bases , 2011, ISSAC '11.
[61] J. Faugère. A new efficient algorithm for computing Gröbner bases (F4) , 1999 .
[62] Heinz Kredel,et al. Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .
[63] Nicolas M. Thiéry,et al. Computing Minimal Generating Sets of Invariant Rings of Permutation Groups with SAGBI-Gröobner Basis , 2001, DM-CCG.
[64] Christian Eder,et al. Improving incremental signature-based Gröbner basis algorithms , 2012, ACCA.
[65] Christian Eder,et al. Signature rewriting in gröbner basis computation , 2013, ISSAC '13.
[66] John Perry,et al. The F5 criterion revised , 2011, J. Symb. Comput..
[67] Christian Eder. A New Attempt On The F5 Criterion , 2008, Comput. Sci. J. Moldova.
[68] Massimo Caboara,et al. Computing inhomogeneous Gröbner bases , 2009, J. Symb. Comput..
[69] Maria Grazia Marinari,et al. Gröbner bases of ideals defined by functionals with an application to ideals of projective points , 1993, Applicable Algebra in Engineering, Communication and Computing.
[70] Jee Koh,et al. On efficient computation of grobner bases , 2008 .
[71] Jean-Charles Faugère,et al. Solving systems of polynomial equations with symmetries using SAGBI-Gröbner bases , 2009, ISSAC '09.
[72] Daniel Lazard,et al. Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.