Vascular anatomy of the fish gill.

The fish gill is the most physiologically diversified vertebrate organ, and its vasculature the most intricate. Application of vascular corrosion techniques that couple high-fidelity resins, such as methyl methacrylate, with scanning electron microscopy yields three-dimensional replicas of the microcirculation that have fostered a better appreciate gill perfusion pathways. This is the focus of the present review. Three vascular networks can be identified within the gill filament. The arterioarterial (respiratory) pathway consists of the lamellae and afferent and efferent segments of the branchial and filamental arteries and lamellar arterioles. The body of the filament contains two post-lamellar pathways: the interlamellar and nutrient. The interlamellar system is an extensive ladder-like network of thin-walled, highly distensible vessels that traverses the filament between, and parallel to, the lamellae and continues around the afferent and efferent borders of the filament. Interlamellar vessels are supplied by short, narrow-bore feeder vessels from the medial wall of the efferent filamental artery. A myriad of narrow-bore, tortuous arterioles arise from the basal efferent filamental artery and efferent branchial artery and anastomose to form the nutrient circulation of the arch and filament. In the filament body, nutrient capillaries and interlamellar vessels are often closely associated, and the former may ultimately drain into the latter. Many of the anatomical characteristics of interlamellar vessels are strikingly similar to those of mammalian lymphatic capillaries, with the exception that interlamellar vessels are directly fed by arteriovenous-like anastomoses. It is likely that gill interlamellar and mammalian lymphatics are physiologically, if not embryologically, equivalent.

[1]  K. Olson Effects of perfusion pressure on the morphology of the central sinus in the trout gill filament , 1983, Cell and Tissue Research.

[2]  K. Olson Morphology and vascular anatomy of the gills of a primitive air-breathing fish, the bowfin (Amia calva) , 1981, Cell and Tissue Research.

[3]  A. Soivio,et al.  Structural and circulatory responses to hypoxia in the secondary lamellae ofSalmo gairdneri gills at two temperatures , 1981, Journal of comparative physiology.

[4]  J. Eastman,et al.  The secondary lamellae of the gills of cold water (high latitude) teleosts , 1980, Cell and Tissue Research.

[5]  K. Olson,et al.  The microvasculature of the elasmobranch gill , 1980, Cell and Tissue Research.

[6]  K. Olson,et al.  Vascular organization of the catfish gill filament , 1979, Cell and Tissue Research.

[7]  W. Vogel,et al.  Arterio-venous anastomoses in rainbow trout gill filaments , 1976, Cell and Tissue Research.

[8]  W. Vogel,et al.  New aspects of the intrafilamental vascular system in gills of a euryhaline teleost, Tilapia mossambica , 1973, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[9]  W. Schlote,et al.  Ultrastructural study of arterio-venous anastomoses in gill filaments of Tilapia mossambica , 2004, Cell and Tissue Research.

[10]  M. Morgan,et al.  The structure of the gill of the trout, Salmo gairdneri (Richardson) , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[11]  G. M. Hughes,et al.  A comparative study of the ultrastructure of the water-blood pathway in the secondary lamellae of teleost and elasmobranch fishes — benthic forms , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[12]  J. Newstead,et al.  Fine structure of the respiratory lamellae of teleostean gills , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[13]  K. Olson,et al.  Vascular anatomy of the gills in a high energy demand teleost, the skipjack tuna (Katsuwonus pelamis). , 2003, Journal of experimental zoology. Part A, Comparative experimental biology.

[14]  K. Olson Gill circulation: regulation of perfusion distribution and metabolism of regulatory molecules. , 2002, The Journal of experimental zoology.

[15]  S. Nilsson,et al.  Branchial innervation. , 2002, The Journal of experimental zoology.

[16]  K. Olson,et al.  Hormone metabolism by the fish gill. , 1998, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[17]  K. Olson Secondary circulation in fish: Anatomical organization and physiological significance , 1996 .

[18]  K. Olson,et al.  Microcirculation of gills and accessory respiratory organs of the walking catfish Clarias batrachus , 1995, The Anatomical record.

[19]  K. Olson,et al.  Microcirculation of gills and accessory respiratory organs from the air‐breathing snakehead fish, Channa punctata, C. gachua, and C. marulius , 1994, The Anatomical record.

[20]  J. Steffensen 4 – The Secondary Vascular System , 1992 .

[21]  K. Olson,et al.  Vasculature of the fish gill: anatomical correlates of physiological functions. , 1991, Journal of electron microscopy technique.

[22]  K. Olson,et al.  Vascular organization of the head and respiratory organs of the air‐breathing catfish, Heteropneustes fossilis , 1990, Journal of morphology.

[23]  K. Olson,et al.  Vasculature of the head and respiratory organs in an obligate air‐breathing fish, the swamp eel Monopterus (=Amphipnous) cuchia , 1990, Journal of morphology.

[24]  H. Ferguson,et al.  Epithelial and pillar cell replacement in gills of juvenile trout, Salmo gairdneri Richardson. , 1987, Comparative biochemistry and physiology. A, Comparative physiology.

[25]  K. Olson,et al.  Gill microcirculation of the air-breathing climbing perch, Anabas testudineus (Bloch):relationships with the accessory respiratory organs and systemic circulation. , 1986, The American journal of anatomy.

[26]  G. M. Hughes 1 General Anatomy of the Gills , 1984 .

[27]  S. de Jager,et al.  The gill in the spiny dogfish, Squalus acanthias: respiratory and nonrespiratory function. , 1984, The American journal of anatomy.

[28]  A. Kiessling,et al.  Evidence for a non-respiratory intralamellar shunt in perfused rainbow trout gills , 1984 .

[29]  S. D. Jager,et al.  The gill in the spiny dogfish, Squalus acanthias: respiratory and nonrespiratory function. , 1984 .

[30]  D. Randall,et al.  Anatomy, gas transfer, and acid-base regulation , 1984 .

[31]  A. G. Ellis,et al.  Arterio‐Venous anastomoses in the gills of australian short‐finned eel, Anguilla australis , 1983, Journal of morphology.

[32]  G. M. Hughes,et al.  Physiological evidence for the occurrence of pathways shunting blood away from the secondary lamellae of eel gills. , 1982, The Journal of experimental biology.

[33]  J. Chamley-Campbell,et al.  Localization of smooth-muscle myosin in branchial pillar cells of snapper (Chrysophys auratus) by immunofluorescence histochemistry. , 1981, The Journal of experimental zoology.

[34]  A. Farrell,et al.  Intralamellar blood flow patterns in fish gills. , 1980, The American journal of physiology.

[35]  A. Farrell Gill morphometrics, vessel dimensions, and vascular resistance in ling cod, Ophiodon elongatus , 1980 .

[36]  A. Farrell Vascular pathways in the gill of ling cod, Ophiodon elongatus , 1980 .

[37]  G. M. Hughes,et al.  Structure of the gills of Barbus sophor (Ham), a cyprinid with tertiary lamellae , 1980 .

[38]  P. Laurent,et al.  Morphology of gill epithelia in fish. , 1980, The American journal of physiology.

[39]  Vogel Wo The origin of Fromm's arteries in trout gills. , 1978 .

[40]  W. Vogel The origin of Fromm's arteries in trout gills. , 1978, Zeitschrift fur mikroskopisch-anatomische Forschung.

[41]  D. Johnson,et al.  Oxygen exchange in a simulated trout gill secondary lamella. , 1977, The American journal of physiology.

[42]  P. Laurent,et al.  Functional Organization of the Teleost Gill , 1976 .

[43]  P. Fromm Circulation in Trout Gills: Presence of "Blebs" in Afferent Filamental Vessels , 1974 .

[44]  G. M. Hughes,et al.  THE STRUCTURE OF FISH GILLS IN RELATION TO THEIR RESPIRATORY FUNCTION , 1973 .

[45]  E. Weibel,et al.  Similarity of supporting tissue in fish gills and the mammalian reticuloendothelium. , 1972, Journal of ultrastructure research.

[46]  B. Muir,et al.  Effects of Blood Pathway on the Blood-Pressure Drop in Fish Gills, With Special Reference to Tunas , 1971 .

[47]  P. Fromm,et al.  Patterns of blood flow through filaments and lamellae of isolated-perfused rainbow trout (Salmo gairdneri) gills , 1969 .

[48]  J. B. Steen,et al.  THE RESPIRATORY FUNCTION OF TELEOSTEAN GILLS. , 1964, Comparative biochemistry and physiology.