Fast Density Inversion Solution for Full Tensor Gravity Gradiometry Data

We modify the classical preconditioned conjugate gradient method for full tensor gravity gradiometry data. The resulting parallelized algorithm is implemented on a cluster to achieve rapid density inversions for various scenarios, overcoming the problems of computation time and memory requirements caused by too many iterations. The proposed approach is mainly based on parallel programming using the Message Passing Interface, supplemented by Open Multi-Processing. Our implementation is efficient and scalable, enabling its use with large-scale data. We consider two synthetic models and real survey data from Vinton Dome, US, and demonstrate that our solutions are reliable and feasible.

[1]  Thomas Bohlen,et al.  Paralel 3-D viscoelastic finite difference seismic modelling , 2002 .

[2]  Xiong Li,et al.  Three-Dimensional Gravity Modeling In All Space , 1998 .

[3]  Michael S. Zhdanov,et al.  Three-dimensional regularized focusing inversion of gravity gradient tensor component data , 2004 .

[4]  G. Amdhal,et al.  Validity of the single processor approach to achieving large scale computing capabilities , 1967, AFIPS '67 (Spring).

[5]  Kagan Tuncay,et al.  Parallel implementation of a velocity-stress staggered-grid finite-difference method for 2-D poroelastic wave propagation , 2006, Comput. Geosci..

[6]  D. Oldenburg,et al.  3-D inversion of gravity data , 1998 .

[7]  F. Windmeijer,et al.  An R-squared measure of goodness of fit for some common nonlinear regression models , 1997 .

[8]  Danian Huang,et al.  3D inversion of airborne gravity-gradiometry data using cokriging , 2014 .

[9]  Kurt J. Marfurt,et al.  Development and Calibration of New 3-D Vector VSP Imaging Technology: Vinton Salt Dome, LA , 2004 .

[10]  Mark Pilkington,et al.  3-D magnetic imaging using conjugate gradients , 1997 .

[11]  Douglas W. Oldenburg,et al.  3-D inversion of magnetic data , 1996 .

[12]  S. A. Thompson,et al.  Vinton Salt Dome, Calcasieu Parish, Louisiana , 1928 .

[13]  R. Parker,et al.  Occam's inversion; a practical algorithm for generating smooth models from electromagnetic sounding data , 1987 .

[14]  Yuan Yuan,et al.  Noise filtering of full-gravity gradient tensor data , 2013, Applied Geophysics.

[15]  C.-L. Cheng,et al.  Coefficient of determination for multiple measurement error models , 2014, J. Multivar. Anal..

[16]  Vanderlei C. Oliveira,et al.  3-D radial gravity gradient inversion , 2013 .

[17]  Kurt J. Marfurt,et al.  Fracture Patterns within Mudstones on the Flanks of a Salt Dome: Syneresis or Slumping? , 2007 .

[18]  John L. Gustafson,et al.  Reevaluating Amdahl's law , 1988, CACM.

[19]  Stuart A. Hall,et al.  Structural Mapping of the Vinton Salt Dome, Louisiana, Using Gravity Gradiometry Data , 2011 .

[20]  Gordon Erlebacher,et al.  High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster , 2010, J. Comput. Phys..

[21]  Roel Snieder,et al.  Obtaining smooth solutions to large, linear, inverse problems , 1994 .

[22]  Carlos Couder-Castañeda,et al.  TESLA GPUs versus MPI with OpenMP for the Forward Modeling of Gravity and Gravity Gradient of Large Prisms Ensemble , 2013, J. Appl. Math..

[23]  Douglas W. Oldenburg,et al.  INVERSION FOR APPLIED GEOPHYSICS: A TUTORIAL , 2003 .

[24]  David R. O'Hallaron,et al.  Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers , 1998 .

[25]  Vipin Kumar,et al.  Parallel depth first search. Part II. Analysis , 1987, International Journal of Parallel Programming.

[26]  Yaoguo Li 3-D Inversion of Gravity Gradiometer Data , 2001 .

[27]  Chen Zhao Three-dimensional fast forward modeling and the inversion strategy for large scale gravity and gravimetry data based on GPU , 2012 .

[28]  J. Lumley,et al.  Comparing gravity and gravity gradient surveys , 2011 .