Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints
暂无分享,去创建一个
[1] Stan Uryasev,et al. Relaxation algorithms to find Nash equilibria with economic applications , 2000 .
[2] H. Nikaidô,et al. Note on non-cooperative convex game , 1955 .
[3] R. Tyrrell Rockafellar,et al. Lagrange Multipliers and Optimality , 1993, SIAM Rev..
[4] Bethany L. Nicholson,et al. Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.
[5] Jirí V. Outrata,et al. A Newton method for a class of quasi-variational inequalities , 1995, Comput. Optim. Appl..
[6] M. Roma,et al. Large-Scale Nonlinear Optimization , 2006 .
[7] Yves Smeers,et al. Spatial Oligopolistic Electricity Models with Cournot Generators and Regulated Transmission Prices , 1999, Oper. Res..
[8] Masao Fukushima,et al. Restricted generalized Nash equilibria and controlled penalty algorithm , 2011, Comput. Manag. Sci..
[9] R. Tyrrell Rockafellar,et al. Robinson’s implicit function theorem and its extensions , 2008, Math. Program..
[10] J. Krawczyk,et al. Relaxation Algorithms in Finding Nash Equilibria , 1998 .
[11] K. Arrow,et al. EXISTENCE OF AN EQUILIBRIUM FOR A COMPETITIVE ECONOMY , 1954 .
[12] B. Hobbs,et al. Linear Complementarity Models of Nash-Cournot Competition in Bilateral and POOLCO Power Markets , 2001, IEEE Power Engineering Review.
[13] Christian Kanzow,et al. Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions , 2009, Comput. Optim. Appl..
[14] Andreas Fischer,et al. On generalized Nash games and variational inequalities , 2007, Oper. Res. Lett..
[15] J. Krawczyk,et al. Numerical solutions to Nash-Cournot equilibria in coupled constraint electricity markets , 2004, IEEE Transactions on Power Systems.
[16] Stephen M. Robinson,et al. Shadow Prices for Measures of Effectiveness, I: Linear Model , 1993, Oper. Res..
[17] F. Facchinei,et al. Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .
[18] Masao Fukushima,et al. Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games , 2009, Comput. Manag. Sci..
[19] M. Ferris,et al. Complementarity problems in GAMS and the PATH solver 1 This material is based on research supported , 2000 .
[20] Francisco Facchinei,et al. Generalized Nash Equilibrium Problems , 2010, Ann. Oper. Res..
[21] R. Janin. Directional derivative of the marginal function in nonlinear programming , 1984 .
[22] Patrick T. Harker,et al. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..
[23] Jacek B. Krawczyk,et al. Numerical solutions to coupled-constraint (or generalised Nash) equilibrium problems , 2007, Comput. Manag. Sci..
[24] J. Goodman. Note on Existence and Uniqueness of Equilibrium Points for Concave N-Person Games , 1965 .
[25] R. Rubinstein,et al. On relaxation algorithms in computation of noncooperative equilibria , 1994, IEEE Trans. Autom. Control..
[26] S. M. Robinson,et al. Solution Continuity in Monotone Affine Variational Inequalities , 2007, SIAM J. Optim..
[27] Francisco Facchinei,et al. Exact penalty functions for generalized Nash problems , 2006 .
[28] Francisco Facchinei,et al. Generalized Nash equilibrium problems and Newton methods , 2008, Math. Program..
[29] S. M. Robinson,et al. Shadow Prices for Measures of Effectiveness, II: General Model , 1993, Oper. Res..
[30] David Bremner,et al. Primal—Dual Methods for Vertex and Facet Enumeration , 1998, Discret. Comput. Geom..
[31] P. Harker. Generalized Nash games and quasi-variational inequalities , 1991 .
[32] A. Banerjee. Convex Analysis and Optimization , 2006 .