Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints

We consider the generalized Nash equilibrium problem (GNEP), in which each player’s strategy set may depend on the rivals’ strategies through shared constraints. A practical approach to solving this problem that has received increasing attention lately entails solving a related variational inequality (VI). From the viewpoint of game theory, it is important to find as many GNEs as possible, if not all of them. We propose two types of parametrized VIs related to the GNEP, one price-directed and the other resource-directed. We show that these parametrized VIs inherit the monotonicity properties of the original VI and, under mild constraint qualifications, their solutions yield all GNEs. We propose strategies to sample in the parameter spaces and show, through numerical experiments on benchmark examples, that the GNEs found by the parametrized VI approaches are widely distributed over the GNE set.

[1]  Stan Uryasev,et al.  Relaxation algorithms to find Nash equilibria with economic applications , 2000 .

[2]  H. Nikaidô,et al.  Note on non-cooperative convex game , 1955 .

[3]  R. Tyrrell Rockafellar,et al.  Lagrange Multipliers and Optimality , 1993, SIAM Rev..

[4]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[5]  Jirí V. Outrata,et al.  A Newton method for a class of quasi-variational inequalities , 1995, Comput. Optim. Appl..

[6]  M. Roma,et al.  Large-Scale Nonlinear Optimization , 2006 .

[7]  Yves Smeers,et al.  Spatial Oligopolistic Electricity Models with Cournot Generators and Regulated Transmission Prices , 1999, Oper. Res..

[8]  Masao Fukushima,et al.  Restricted generalized Nash equilibria and controlled penalty algorithm , 2011, Comput. Manag. Sci..

[9]  R. Tyrrell Rockafellar,et al.  Robinson’s implicit function theorem and its extensions , 2008, Math. Program..

[10]  J. Krawczyk,et al.  Relaxation Algorithms in Finding Nash Equilibria , 1998 .

[11]  K. Arrow,et al.  EXISTENCE OF AN EQUILIBRIUM FOR A COMPETITIVE ECONOMY , 1954 .

[12]  B. Hobbs,et al.  Linear Complementarity Models of Nash-Cournot Competition in Bilateral and POOLCO Power Markets , 2001, IEEE Power Engineering Review.

[13]  Christian Kanzow,et al.  Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions , 2009, Comput. Optim. Appl..

[14]  Andreas Fischer,et al.  On generalized Nash games and variational inequalities , 2007, Oper. Res. Lett..

[15]  J. Krawczyk,et al.  Numerical solutions to Nash-Cournot equilibria in coupled constraint electricity markets , 2004, IEEE Transactions on Power Systems.

[16]  Stephen M. Robinson,et al.  Shadow Prices for Measures of Effectiveness, I: Linear Model , 1993, Oper. Res..

[17]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[18]  Masao Fukushima,et al.  Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games , 2009, Comput. Manag. Sci..

[19]  M. Ferris,et al.  Complementarity problems in GAMS and the PATH solver 1 This material is based on research supported , 2000 .

[20]  Francisco Facchinei,et al.  Generalized Nash Equilibrium Problems , 2010, Ann. Oper. Res..

[21]  R. Janin Directional derivative of the marginal function in nonlinear programming , 1984 .

[22]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[23]  Jacek B. Krawczyk,et al.  Numerical solutions to coupled-constraint (or generalised Nash) equilibrium problems , 2007, Comput. Manag. Sci..

[24]  J. Goodman Note on Existence and Uniqueness of Equilibrium Points for Concave N-Person Games , 1965 .

[25]  R. Rubinstein,et al.  On relaxation algorithms in computation of noncooperative equilibria , 1994, IEEE Trans. Autom. Control..

[26]  S. M. Robinson,et al.  Solution Continuity in Monotone Affine Variational Inequalities , 2007, SIAM J. Optim..

[27]  Francisco Facchinei,et al.  Exact penalty functions for generalized Nash problems , 2006 .

[28]  Francisco Facchinei,et al.  Generalized Nash equilibrium problems and Newton methods , 2008, Math. Program..

[29]  S. M. Robinson,et al.  Shadow Prices for Measures of Effectiveness, II: General Model , 1993, Oper. Res..

[30]  David Bremner,et al.  Primal—Dual Methods for Vertex and Facet Enumeration , 1998, Discret. Comput. Geom..

[31]  P. Harker Generalized Nash games and quasi-variational inequalities , 1991 .

[32]  A. Banerjee Convex Analysis and Optimization , 2006 .