Refinement equations and spline functions

In this paper, we exploit the relation between the regularity of refinable functions with non-integer dilations and the distribution of powers of a fixed number modulo 1, and show the nonexistence of a non-trivial C ∞  solution of the refinement equation with non-integer dilations. Using this, we extend the results on the refinable splines with non-integer dilations and construct a counterexample to some conjecture concerning the refinable splines with non-integer dilations. Finally, we study the box splines satisfying the refinement equation with non-integer dilation and translations. Our study involves techniques from number theory and harmonic analysis.

[1]  J. Lagarias,et al.  EXISTENCE AND GLOBAL REGULARITY OF SOLUTIONS * , 2022 .

[2]  R. Tennant Algebra , 1941, Nature.

[3]  Y. Peres,et al.  Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions , 2000 .

[4]  A. Khintchine Über eine Klasse linearer diophantischer Approximationen , 1926 .

[5]  Yuan Yan Tang,et al.  Characterization of compactly supported refinable splines whose shifts form a Riesz basis , 2005, J. Approx. Theory.

[6]  Ding-Xuan Zhou SOME CHARACTERIZATIONS FOR BOX SPLINE WAVELETS AND LINEAR DIOPHANTINE EQUATIONS , 1998 .

[7]  Wayne Lawton,et al.  Characterization of compactly supported refinable splines , 1995, Adv. Comput. Math..

[8]  A. Schinzel,et al.  Polynomials with Special Regard to Reducibility: Index of terms , 2000 .

[9]  A. Dubickas ON THE FRACTIONAL PARTS OF LACUNARY SEQUENCES , 2006 .

[10]  B. de Mathan,et al.  Numbers contravening a condition in density modulo 1 , 1980 .

[11]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[12]  Yang Wang,et al.  Refinable functions with non-integer dilations , 2007 .

[13]  N. Sivakumar,et al.  On the linear independence of integer translates of box splines with rational directions , 1990 .

[14]  P-4ur,et al.  ON A FAMILY OF SYMMETRIC BERNOULLI CONVOLUTIONS , 2002 .

[15]  B. M. Fulk MATH , 1992 .

[16]  By Ronald DeVore Developing a Computation-Friendly Mathematical Foundation for Spline Functions , 2005 .

[17]  Qiyu Sun Refinable Functions with Compact Support , 1996 .

[18]  Yang Wang,et al.  Structure of refinable splines , 2007 .

[19]  Paul Erdös,et al.  Problems and results on diophantine approximations (II) , 1975 .

[20]  I. Daubechies,et al.  Two-scale difference equations I: existence and global regularity of solutions , 1991 .

[21]  Charles A. Micchelli,et al.  Using the Refinement Equations for the Construction of Pre-Wavelets II: Powers of Two , 1991, Curves and Surfaces.

[22]  Yang Wang,et al.  BERNOULLI CONVOLUTIONS ASSOCIATED wITH CERTAIN NON--PISOT NUMBERS" , 2004 .

[23]  Hartmut Prautzsch,et al.  Box Splines , 2002, Handbook of Computer Aided Geometric Design.

[24]  P. Erdös Problems and Results on Diophantine Approximations , 1964 .

[25]  Classification of Refinable Splines , 2006 .

[26]  B. Solomyak On the random series $\sum \pm \lambda^n$ (an Erdös problem) , 1995 .

[27]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[28]  A. Schinzel Polynomials with Special Regard to Reducibility: Polynomials over a number field , 2000 .

[29]  Charles A. Micchelli,et al.  Using the refinement equation for the construction of pre-wavelets , 1991, Numerical Algorithms.