On the sensitivity of the POD technique for a parameterized quasi-nonlinear parabolic equation

[1]  Albert Y. Zomaya,et al.  Partial Differential Equations , 2007, Explorations in Numerical Analysis.

[2]  M. Marin,et al.  Elliptic Partial Differential Equations , 2018, Numerical Methods for Engineers and Scientists.

[3]  Erwan Liberge,et al.  A mathematical and numerical study of the sensitivity of a reduced order model by POD (ROM-POD), for a 2D incompressible fluid flow , 2014, J. Comput. Appl. Math..

[4]  N. Akkari,et al.  Mathematical and numerical results on the parametric sensitivity of a ROM-POD of the Burgers equation , 2014 .

[5]  C. Farhat,et al.  Model order reduction of embedded boundary models , 2013 .

[6]  A. Ammar,et al.  PGD-Based Computational Vademecum for Efficient Design, Optimization and Control , 2013, Archives of Computational Methods in Engineering.

[7]  A. Quarteroni,et al.  Shape optimization for viscous flows by reduced basis methods and free‐form deformation , 2012 .

[8]  Jan S. Hesthaven,et al.  Certified reduced basis method for electromagnetic scattering and radar cross section estimation , 2012 .

[9]  Stefan Volkwein,et al.  Model reduction techniques with a-posteriori error analysis for linear-quadratic optimal control problems , 2012 .

[10]  A. Patera,et al.  A PRIORI CONVERGENCE OF THE GREEDY ALGORITHM FOR THE PARAMETRIZED REDUCED BASIS METHOD , 2012 .

[11]  Gianluigi Rozza,et al.  A Reduced Basis Model with Parametric Coupling for Fluid-Structure Interaction Problems , 2012, SIAM J. Sci. Comput..

[12]  G. Vossen,et al.  Certified reduced basis methods for parametrized parabolic partial differential equations with non-affine source terms , 2012 .

[13]  Timo Tonn,et al.  Comparison of the reduced-basis and POD a posteriori error estimators for an elliptic linear-quadratic optimal control problem , 2011 .

[14]  Francisco Chinesta,et al.  Solving parametric complex fluids models in rheometric flows , 2010 .

[15]  Francisco Chinesta,et al.  Recent Advances and New Challenges in the Use of the Proper Generalized Decomposition for Solving Multidimensional Models , 2010 .

[16]  Pedro Díez,et al.  An error estimator for separated representations of highly multidimensional models , 2010 .

[17]  G. Rozza,et al.  Parametric free-form shape design with PDE models and reduced basis method , 2010 .

[18]  P. Ladevèze,et al.  The LATIN multiscale computational method and the Proper Generalized Decomposition , 2010 .

[19]  Erwan Liberge,et al.  Reduced order modelling method via proper orthogonal decomposition (POD) for flow around an oscillating cylinder , 2010 .

[20]  Erwan Liberge,et al.  Reduced-order modelling by POD-multiphase approach for fluid-structure interaction , 2010 .

[21]  Charbel Farhat,et al.  A method for interpolating on manifolds structural dynamics reduced‐order models , 2009 .

[22]  Stefan Volkwein,et al.  POD a-posteriori error estimates for linear-quadratic optimal control problems , 2009, Comput. Optim. Appl..

[23]  Gianluigi Rozza,et al.  Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation , 2009 .

[24]  Charbel Farhat,et al.  On-Demand CFD-Based Aeroelastic Predictions Using a Database of Reduced-Order Bases and Models , 2009 .

[25]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[26]  Stefan Volkwein,et al.  Error estimates for abstract linear–quadratic optimal control problems using proper orthogonal decomposition , 2008, Comput. Optim. Appl..

[27]  N. Nguyen,et al.  EFFICIENT REDUCED-BASIS TREATMENT OF NONAFFINE AND NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS , 2007 .

[28]  A. Hamdouni,et al.  Proper orthogonal decomposition investigation in fluid structure interaction , 2007 .

[29]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .

[30]  Charbel Farhat,et al.  Reduced-order fluid/structure modeling of a complete aircraft configuration , 2006 .

[31]  A. Patera,et al.  Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds , 2003 .

[32]  P. Ladevèze,et al.  On a Multiscale Computational Strategy with Time and Space Homogenization for Structural Mechanics , 2003 .

[33]  A. Patera,et al.  A Priori Convergence Theory for Reduced-Basis Approximations of Single-Parameter Elliptic Partial Differential Equations , 2002, Journal of Scientific Computing.

[34]  Anthony T. Patera,et al.  Output bounds for reduced-order approximations of elliptic partial differential equations , 2001 .

[35]  K. Afanasiev,et al.  Adaptive Control Of A Wake Flow Using Proper Orthogonal Decomposition1 , 2001 .

[36]  S. Ravindran,et al.  A Reduced-Order Method for Simulation and Control of Fluid Flows , 1998 .

[37]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[38]  Graham R. Fleming,et al.  Bulletin of the American Physical Society , 2015 .

[39]  E. Cueto,et al.  Proper Generalized Decomposition based dynamic data driven inverse identification , 2012, Math. Comput. Simul..

[40]  A. Hamdouni,et al.  Low order dynamical system for fluid-rigid body interaction problem using POD method , 2008 .

[41]  Anthony T. Patera,et al.  Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations , 2002 .

[42]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[43]  G. Rozza,et al.  Mathematical Modelling and Numerical Analysis on the Approximation of Stability Factors for General Parametrized Partial Differential Equations with a Two-level Affine Decomposition , 2022 .