Dust destruction in the ISM: a re-evaluation of dust lifetimes

Context. There is a long-standing conundrum in interstellar dust studies relating to the discrepancy between the time-scales for dust formation from evolved stars and the apparently more rapid destruction in supernova-generated shock waves. Aims. We re-examine some of the key issues relating to dust evolution and processing in the interstellar medium. Methods. We use recent and new constraints from observations, experiments, modelling and theory to re-evaluate dust formation in the interstellar medium (ISM). Results. We find that the discrepancy between the dust formation and destruction time-scales may not be as significant as has previously been assumed because of the very large uncertainties involved. Conclusions. The derived silicate dust lifetime could be compatible with its injection time-scale, given the inherent uncertainties in the dust lifetime calculation. The apparent need to re-form significant quantities of silicate dust in the tenuous interstellar medium may therefore not be a strong requirement. Carbonaceous matter, on the other hand, appears to be rapidly recycled in the ISM and, in contrast to silicates, there are viable mechanisms for its re-formation in the ISM.

[1]  S. Ehlerová,et al.  H I shells in the outer Milky Way , 2005, astro-ph/0503443.

[2]  J. Silk,et al.  The dynamical interaction of a newly formed protostar with infalling matter - The origin of interstellar grains , 1976 .

[3]  B. Meyer,et al.  Condensation of Carbon in Radioactive Supernova Gas , 1999, Science.

[4]  M. L. Kaiser,et al.  Dust Detection by the Wave Instrument on STEREO: Nanoparticles Picked up by the Solar Wind? , 2009, 0903.4141.

[5]  W. V. Breugel,et al.  Energetic Processing of Interstellar Silicate Grains by Cosmic Rays , 2007 .

[6]  W. Duley,et al.  Locally Aromatic Polycyclic Hydrocarbons as Potential Carriers of Infrared Emission Features , 2003 .

[7]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[8]  Recipes for stellar jets: results of combined optical/infrared diagnostics , 2006, astro-ph/0606280.

[9]  M. Bureau,et al.  Environment, Ram Pressure, and Shell Formation in Holmberg II , 2001, astro-ph/0112325.

[10]  J. Nuth,et al.  Evolving Optical Properties of Annealing Silicate Grains: From Amorphous Condensate to Crystalline Mineral , 2000 .

[11]  G. S. Wright,et al.  Spectropolarimetry of the 3.4 μm Absorption Feature in NGC 1068 , 2006 .

[12]  F. Stadermann,et al.  Presolar spinel grains from the Murray and Murchison carbonaceous chondrites , 2003 .

[13]  B. Savage,et al.  The Abundance of Interstellar Carbon , 1996 .

[14]  E. Dartois,et al.  The 6.2 μm band position in laboratory and astrophysical spectra: a tracer of the aliphatic to aromatic evolution of interstellar carbonaceous dust , 2008 .

[15]  Richard N. Zare,et al.  Side Group Addition to the Polycyclic Aromatic Hydrocarbon Coronene by Ultraviolet Photolysis in Cosmic Ice Analogs , 2002 .

[16]  Depletion patterns and dust evolution in the interstellar medium , 1999, astro-ph/9907066.

[17]  E. Sedlmayr,et al.  Self-consistent modeling of the outflow from the O-rich Mira IRC –20197 , 2003 .

[18]  J. Hecht,et al.  Signatures of aging silicate dust , 1990 .

[19]  J. Nuth,et al.  Interstellar and Interplanetary Grains Recent Developments and New Opportunities for Experimental Chemistry , 1998 .

[20]  Kenneth R. Sembach,et al.  INTERSTELLAR ABUNDANCES FROM ABSORPTION-LINE OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE , 1996 .

[21]  J. Bradley Chemically Anomalous, Preaccretionally Irradiated Grains in Interplanetary Dust from Comets , 1994, Science.

[22]  D. Deamer,et al.  Self-assembling amphiphilic molecules: Synthesis in simulated interstellar/precometary ices. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  J. Greenberg,et al.  Origin of organic matter in the protosolar nebula and in comets. , 1995, Advances in space research : the official journal of the Committee on Space Research.

[24]  G. Wright,et al.  Spectropolarimetry of the 3.4 μm Feature in the Diffuse ISM toward the Galactic Center Quintuplet Cluster , 2006, astro-ph/0607245.

[25]  J. Mathis Dust Models with Tight Abundance Constraints , 1996 .

[26]  Ann N Nguyen,et al.  Discovery of Ancient Silicate Stardust in a Meteorite , 2004, Science.

[27]  G. P. Forêts,et al.  Shocks in dense clouds III. Dust processing and feedback effects in C-type shocks , 2011 .

[28]  Marla H. Moore,et al.  Reactions of nitriles in ices relevant to Titan, comets, and the interstellar medium: formation of cyanate ion, ketenimines, and isonitriles , 2004 .

[29]  D. Strickland,et al.  Starburst-driven galactic winds — I. Energetics and intrinsic X-ray emission , 2000, astro-ph/0001395.

[30]  L. Nittler,et al.  Stellar Sapphires: The Properties and Origins of Presolar Al2O3 in Meteorites , 1997 .

[31]  V. Guillet,et al.  Shocks in dense clouds I. Dust dynamics , 2007 .

[32]  T. Croat,et al.  Constraints on Grain Formation around Carbon Stars from Laboratory Studies of Presolar Graphite , 2005 .

[33]  F. Boulanger,et al.  H2 formation and excitation in the Stephan's Quintet galaxy-wide collision , 2009, 0904.4239.

[34]  L. Cowie Refractory grain destruction in low-velocity shocks. , 1978 .

[35]  J. Greenberg,et al.  The Largest Molecules in Space: Interstellar Dust , 1983 .

[36]  J. Nuth,et al.  Laboratory studies of silicate smokes: Analog studies of circumstellar materials , 2000 .

[37]  L. Nittler,et al.  Polymorphism in Presolar Al2O3 Grains from Asymptotic Giant Branch Stars , 2004, Science.

[38]  Hajime Yano,et al.  Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples , 2006, Science.

[39]  T. Henning,et al.  Facts and Artifacts in Interstellar Diamond Spectra , 1995 .

[40]  P. C. Gibbons,et al.  Electron Energy Loss Spectrometry of Interstellar Diamonds , 1990 .

[41]  C. Cheng,et al.  Surface C-H stretching features on meteoritic nanodiamonds , 2004 .

[42]  W. Sorrell Annealed HAC mantles in diffuse dust clouds , 1991 .

[43]  Laboratory investigation of hydrogenated diamond surfaces: Implications for the formation and size of interstellar nanodiamonds , 2002 .

[44]  E. Dwek,et al.  The evolution of refractory interstellar grains in the solar neighborhood , 1980 .

[45]  J. Hecht The nature of the dust around R Coronae Borealis stars - Isolated amorphous carbon or graphite fractals? , 1991 .

[46]  A. Tielens,et al.  The Absence of Crystalline Silicates in the Diffuse Interstellar Medium , 2004, astro-ph/0403609.

[47]  P. Daukantas,et al.  Mid-Infrared Spectral Evolution of Amorphous Magnesium Silicate Smokes Annealed in Vacuum: Comparison to Cometary Spectra , 1998 .

[48]  T. Henning,et al.  Structural processing of enstatite by ion bombardment , 2003 .

[49]  Orsay,et al.  Polycyclic aromatic hydrocarbon processing in interstellar shocks , 2009, 0910.2461.

[50]  G. Wright,et al.  Spectropolarimetric Constraints on the Nature of the 3.4 Micron Absorber in the Interstellar Medium , 1999 .

[51]  A. Jones Carbon atom clusters in random covalent networks: PAHs as an integral component of interstellar HAC , 1990 .

[52]  A. Tielens,et al.  The infrared emission bands. I - Correlation studies and the dependence on C/O ratio. [in planetary and reflection nebulae and H II regions] , 1986 .

[53]  T. Heckman,et al.  The dynamics and high-energy emission of conductive gas clouds in supernova-driven galactic superwinds , 2005, astro-ph/0506645.

[54]  Wilfred H. Sorrell,et al.  The 2175-A feature from irradiated graphitic particles , 1990 .

[55]  J. Nuth Grain Formation and Metamorphism , 1996 .

[56]  H. Leroux,et al.  The origin of GEMS in IDPs as deduced from microstructural evolution of amorphous silicates with annealing , 2006, astro-ph/0602079.

[57]  P. Frisch,et al.  Evidence of a High Carbon Abundance in the Local Interstellar Cloud , 2006, astro-ph/0609323.

[58]  N. Johnson,et al.  A Self-Perpetuating Catalyst for the Production of Complex Organic Molecules in Protostellar Nebulae , 2008, Proceedings of the International Astronomical Union.

[59]  Takeshi Sato,et al.  Direct observation of crystallization of amorphous Mg-bearing silicate grains into Mg$\mathsf{_{2}SiO_{4}}$ (forsterite) , 2005 .

[60]  W. W. Duley,et al.  Chemical Evolution of Carbonaceous Material in Interstellar Clouds , 2000 .

[61]  P. Lamy,et al.  Interplanetary dust: are there two independent populations? , 1978, Nature.

[62]  G. Wasserburg,et al.  Oxygen isotopes in circumstellar Al203 grains from meteorites and stellar nucleosynthesis , 1994 .

[63]  Dinshaw S. Balsara,et al.  DYNAMICS AND X-RAY EMISSION OF A GALACTIC SUPERWIND INTERACTING WITH DISK AND HALO GAS , 1994 .

[64]  W. Kratschmer,et al.  Dust in the local interstellar wind , 1999 .

[65]  Orsay,et al.  Polycyclic aromatic hydrocarbon processing in a hot gas , 2009, 0912.1595.

[66]  J. Silk,et al.  Sputtering in interstellar shocks - A model for heavy element depletion , 1977 .

[67]  E. Grün,et al.  Ulysses dust measurements near Jupiter. , 1992, Science.

[68]  H. Zook,et al.  A source for hyperbolic cosmic dust particles , 1975 .

[69]  D. Whittet,et al.  OXYGEN DEPLETION IN THE INTERSTELLAR MEDIUM: IMPLICATIONS FOR GRAIN MODELS AND THE DISTRIBUTION OF ELEMENTAL OXYGEN , 2009, 0912.3298.

[70]  A. Tielens,et al.  Grain destruction in shocks in the interstellar medium , 1994 .

[71]  G. P. Forêts,et al.  Shocks in dense clouds. II. Dust destruction and SiO formation in J shocks , 2009 .

[72]  L. Colangeli,et al.  A New Approach to the Puzzle of the Ultraviolet Interstellar Extinction Bump , 1998 .

[73]  B. Draine,et al.  Properties, detectability and origin of interstellar diamonds in meteorites , 1989, Nature.

[74]  A. Tielens,et al.  Grain Shattering in Shocks: The Interstellar Grain Size Distribution , 1996 .

[75]  J. Borg,et al.  Structural and chemical alteration of crystalline olivine under low energy He + irradiation , 2001 .

[76]  Modification of dust-grain structure by sputtering , 2003, astro-ph/0312327.

[77]  David A. Williams,et al.  Hydrogenated amorphous carbon-coated silicate particles as a source of interstellar extinction , 1989 .

[78]  D. Hollenbach,et al.  The structure of the time-dependent interstellar shocks and grain destruction in the interstellar medium , 1987 .

[79]  A. Jones,et al.  Carbonaceous dust in interstellar shock waves: hydrogenated amorphous carbon (a-C:H) vs. graphite , 2008 .

[80]  S. Federman,et al.  The Depletion of Calcium in the Interstellar Medium , 1994 .

[81]  F. Stadermann,et al.  Samples of Stars Beyond the Solar System: Silicate Grains in Interplanetary Dust , 2003, Science.

[82]  W. Duley Evidence for hydrogenated amorphous carbon in the Red Rectangle , 1985 .

[83]  M. Cluver,et al.  Observations and modeling of the dust emission from the H2-bright galaxy-wide shock in Stephan's Quintet , 2010, 1004.0677.

[84]  L. Spitzer,et al.  A Comparison of the Components in Interstellar Sodium and Calcium. , 1952 .

[85]  A. Tielens,et al.  Near-Infrared Spectroscopy of the Proto-Planetary Nebula CRL 618 and the Origin of the Hydrocarbon Dust Component in the Interstellar Medium , 1998, The Astrophysical journal.

[86]  E. Salpeter,et al.  Destruction mechanisms for interstellar dust , 1979 .

[87]  K. L. Day A possible identification of the 10-micron ``silicate'' feature , 1974 .

[88]  Ernst K. Zinner,et al.  Astrophysical Implications of the Laboratory Study of Presolar Materials , 1997 .

[89]  W. Duley,et al.  The 3.4-mu.m interstellar absorption feature in CYG OB2 No 12. , 1990 .

[90]  J. Mathis,et al.  Dust Grain Size Distributions and the Abundance of Refractory Elements in the Diffuse Interstellar Medium , 1997 .

[91]  Scott Messenger,et al.  Pristine presolar silicon carbide , 2003 .

[92]  E. Dartois,et al.  Diffuse interstellar medium organic polymers: Photoproduction of the 3.4, 6.85 and 7.25 μm features , 2004 .

[93]  R N Zare,et al.  UV irradiation of polycyclic aromatic hydrocarbons in ices: production of alcohols, quinones, and ethers. , 1999, Science.

[94]  Edward B. Jenkins,et al.  A UNIFIED REPRESENTATION OF GAS-PHASE ELEMENT DEPLETIONS IN THE INTERSTELLAR MEDIUM , 2009, 0905.3173.

[95]  Alexander G. G. M. Tielens,et al.  Near-infrared absorption spectroscopy of interstellar hydrocarbon grains , 1994 .

[96]  J. Greenberg Interstellar dust as the source of organic molecules in Comet Halley , 1989 .

[97]  W. Schutte Laboratory simulation of physical and chemical processes in interstellar ices , 1997 .

[98]  Steven N. Shore,et al.  Photo-ionization induced rapid grain growth in novae , 2004 .

[99]  E. Anders,et al.  Interstellar graphite in meteorites , 1990, Nature.

[100]  D. York,et al.  Intermediate- and High-Velocity Ionized Gas toward ζ Orionis , 2002, astro-ph/0208374.

[101]  Are PAHs precursors of small hydrocarbons in photo-dissociation regions? The Horsehead case , 2005, astro-ph/0501339.

[102]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[103]  P. Hartigan,et al.  Hubble Space Telescope Observations of Proper Motions in Herbig-Haro Objects 1 and 2 , 2002 .

[104]  Alexander G. G. M. Tielens,et al.  The physics of grain-grain collisions and gas-grain sputtering in interstellar shocks , 1994 .

[105]  K. Sellgren,et al.  The interstellar C-H stretching band near 3.4 microns: constraints on the composition of organic material in the diffuse interstellar medium. , 1991, The Astrophysical journal.

[106]  E. Salpeter,et al.  On the physics of dust grains in hot gas. , 1979 .

[107]  Sergei I. Ipatov,et al.  TRIGGERING COLLAPSE OF THE PRESOLAR DENSE CLOUD CORE AND INJECTING SHORT-LIVED RADIOISOTOPES WITH A SHOCK WAVE. I. VARIED SHOCK SPEEDS , 2009, 0911.3417.

[108]  On ultrasmall silicate grains in the diffuse interstellar medium , 2000, astro-ph/0012147.

[109]  R. Chevalier,et al.  Wind from a starburst galaxy nucleus , 1985, Nature.

[110]  W. Krätschmer,et al.  Infrared extinction of heavy ion irradiated and amorphous olivine, with applications to interstellar dust , 1979 .

[111]  C. Seab,et al.  Shock processing of interstellar grains , 1983 .

[112]  Y. Nakada,et al.  Does a 2,200 Å hump observed in an artificial carbonaceous composite account for UV interstellar extinction? , 1983, Nature.

[113]  Y. Minowa,et al.  Spatially Resolved 3 Micron Spectroscopy of IRAS 22272+5435: Formation and Evolution of Aliphatic Hydrocarbon Dust in Proto-Planetary Nebulae , 2003, astro-ph/0301311.

[114]  J. M. C. Rawlings,et al.  Infrared spectroscopy of Nova Cassiopeiae 1993 ¿ IV. A closer look at the dust , 2005 .

[115]  C. Lucas,et al.  THE FORMATION OF GRAPHITE WHISKERS IN THE PRIMITIVE SOLAR NEBULA , 2010 .