Stopping Rules for the Stochastic Nested Partitions Method

We have recently developed a global optimization methodology for solving combinatorial problems with either deterministic or stochastic performance functions. This method, the Nested Partitions (NP) method has been shown to generate a Markov chain and with probability one to converge to a global optimum. In this paper, we study the rate of convergence of the method through the use of Markov Chain Monte Carlo (MCMC) methods, and use this to derive stopping rules that can be applied during simulation-based optimization. A numerical example serves to illustrate the feasibility of our approach.

[1]  Gareth O. Roberts,et al.  Markov‐chain monte carlo: Some practical implications of theoretical results , 1998 .

[2]  R. Fall Cycling of Methanol between Plants, Methylotrophs and the Atmosphere , 1996 .

[3]  D. Regier,et al.  Cytokinin production by Agrobacterium and Pseudomonas spp , 1987, Journal of bacteriology.

[4]  S. Meyn,et al.  Computable Bounds for Geometric Convergence Rates of Markov Chains , 1994 .

[5]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[6]  Leyuan Shi,et al.  Stopping criterion for a simulation-based optimization method , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[7]  Yu-Chi Ho,et al.  Ordinal optimization of DEDS , 1992, Discret. Event Dyn. Syst..

[8]  Mahmoud H. Alrefaei,et al.  Accelerating the convergence of the stochastic ruler method for discrete stochastic optimization , 1997, WSC '97.

[9]  Leyuan Shi,et al.  New parallel randomized algorithms for the traveling salesman problem , 1999, Comput. Oper. Res..

[10]  Leyuan Shi,et al.  Nested Partitions Method for Global Optimization , 2000, Oper. Res..

[11]  M. Goodfellow,et al.  Pseudomonas mesophilica, a New Species of Pink Bacteria Isolated from Leaf Surfaces , 1979 .

[12]  Gareth O. Roberts,et al.  Convergence assessment techniques for Markov chain Monte Carlo , 1998, Stat. Comput..

[13]  W. A. Corpe,et al.  Ecology of the methylotrophic bacteria on living leaf surfaces , 1989 .

[14]  M. Holland,et al.  Occam's Razor Applied to Hormonology (Are Cytokinins Produced by Plants?) , 1997, Plant physiology.

[15]  Weibo Gong,et al.  Stochastic comparison algorithm for discrete optimization with estimation , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[16]  Jeffrey S. Rosenthal,et al.  Convergence Rates for Markov Chains , 1995, SIAM Rev..

[17]  E. Nester,et al.  Plasmids specifying plant hyperplasias. , 1981, Annual review of microbiology.

[18]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[19]  Mary Kathryn Cowles,et al.  A simulation approach to convergence rates for Markov chain Monte Carlo algorithms , 1998, Stat. Comput..

[20]  Sigrún Andradóttir,et al.  A Global Search Method for Discrete Stochastic Optimization , 1996, SIAM J. Optim..

[21]  D. Yan,et al.  Stochastic discrete optimization , 1992 .

[22]  Leyuan Shi,et al.  Nested Partitions Method for Stochastic Optimization , 2000 .

[23]  R. Rubinstein The Cross-Entropy Method for Combinatorial and Continuous Optimization , 1999 .