Research on Combination Forecast Mode of Conceptual Hydrological Model

The calibration and selection of conceptual hydrological model parameters is an important but complex task in runoff forecasting. In order to solve the calibration of conceptual hydrological model parameters, a multi-objective cultural self-adaptive electromagnetism-like mechanism algorithm (MOCSEM) is proposed in this paper. The multi-objective parameter calibration method of runoff forecasting avoids the “averaging effect” and considers both large and small runoffs hydrological features. In this paper, the self-identifying parameter combination forecasting method (SPCFM), a universality combination forecast model, is developed innovatively to improve forecasting precision by using the extreme parameters of Pareto optimal solutions. Finally, MOCSEM is combined with SPCFM to calibrate the parameters of forecasting model and forecast runoff of Leaf River. The results indicate that the proposed methods improve forecast accuracy and provide an effective approach to runoff forecast.

[1]  András Bárdossy,et al.  Toward a more efficient Calibration Schema for HBV rainfall-runoff model , 2012 .

[2]  S. Sorooshian,et al.  A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .

[3]  Zhang Yong-chuan Study on Multi-objective Calibration of Hydrological Model and Effect of Objective Functions Combination on Optimization Results , 2011 .

[4]  John W. Nicklow,et al.  Multi-objective automatic calibration of SWAT using NSGA-II , 2007 .

[5]  Patrick M. Reed,et al.  How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration , 2005 .

[6]  Gift Dumedah,et al.  Formulation of the Evolutionary-Based Data Assimilation, and its Implementation in Hydrological Forecasting , 2012, Water Resources Management.

[7]  Luis A. Bastidas,et al.  Multiobjective particle swarm optimization for parameter estimation in hydrology , 2006 .

[8]  H. Madsen,et al.  Multiobjective calibration with Pareto preference ordering: An application to rainfall‐runoff model calibration , 2005 .

[9]  L. Douglas James,et al.  Developing an Efficient Auto-Calibration Algorithm for HEC-HMS Program , 2016, Water Resources Management.

[10]  Zhao Mingyan Parameter calibration of Xinanjiang rainfall-runoff model by using parallel genetic algorithm , 2004 .

[11]  Michael E. Dietz,et al.  Calibration and Verification of SWMM for Low Impact Development , 2015 .

[12]  Jun Xia,et al.  Integration of a statistical emulator approach with the SCE-UA method for parameter optimization of a hydrological model , 2012 .

[13]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[14]  Shailesh Kumar Singh Long-term Streamflow Forecasting Based on Ensemble Streamflow Prediction Technique: A Case Study in New Zealand , 2016, Water Resources Management.

[15]  Jasper A. Vrugt,et al.  Comparison of point forecast accuracy of model averaging methods in hydrologic applications , 2010 .

[16]  Ching-Shih Tsou,et al.  An Electromagnetism-Like Meta-Heuristic for Multi-Objective Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[17]  Wei Guo-xiao Application of PSO algorithm to calibrate the Xin’anjiang Hydrological Model , 2010 .

[18]  C.-H. Kao,et al.  Multi-objective inventory control using electromagnetism-like meta-heuristic , 2008 .

[19]  Mark Wineberg,et al.  Selecting Model Parameter Sets from a Trade-off Surface Generated from the Non-Dominated Sorting Genetic Algorithm-II , 2010 .

[20]  Hao Wang,et al.  Multi-Objective Parameter Calibration and Multi-Attribute Decision-Making: An Application to Conceptual Hydrological Model Calibration , 2014, Water Resources Management.

[21]  Yi Liu,et al.  A Novel Multi-Objective Shuffled Complex Differential Evolution Algorithm with Application to Hydrological Model Parameter Optimization , 2013, Water Resources Management.

[22]  Shu-Cherng Fang,et al.  An Electromagnetism-like Mechanism for Global Optimization , 2003, J. Glob. Optim..

[23]  S. Sorooshian,et al.  Shuffled complex evolution approach for effective and efficient global minimization , 1993 .

[24]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[25]  C. Diks,et al.  Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation , 2005 .

[26]  Zhang Yong-chuan Multi-objective optimization for conceptual hydrological models , 2012 .

[27]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[28]  N. J. DE VOS,et al.  Multi-objective performance comparison of an artificial neural network and a conceptual rainfall—runoff model , 2007 .

[29]  D. Boyle Multicriteria Calibration of Hydrologic Models , 2013 .

[30]  Guo Xiaming Runoff prediction by BP networks model based on PSO , 2006 .

[31]  W. J. Shuttleworth,et al.  Parameter estimation of a land surface scheme using multicriteria methods , 1999 .

[32]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods , 2000 .

[33]  Chuntian Cheng,et al.  Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall–runoff model calibration , 2002 .

[34]  Martijn J. Booij,et al.  Catchment Variability and Parameter Estimation in Multi-Objective Regionalisation of a Rainfall–Runoff Model , 2010 .

[35]  S. Sorooshian,et al.  Effective and efficient algorithm for multiobjective optimization of hydrologic models , 2003 .

[36]  Reza Tavakkoli-Moghaddam,et al.  A novel hybrid approach combining electromagnetism-like method with Solis and Wets local search for continuous optimization problems , 2009, J. Glob. Optim..

[37]  Soroosh Sorooshian,et al.  Multi-objective global optimization for hydrologic models , 1998 .

[38]  Soroosh Sorooshian,et al.  A framework for development and application of hydrological models , 2001, Hydrology and Earth System Sciences.

[39]  Henrik Madsen,et al.  Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling , 2008 .

[40]  P. Mujumdar,et al.  Reservoir performance under uncertainty in hydrologic impacts of climate change , 2010 .

[41]  R. Moore The probability-distributed principle and runoff production at point and basin scales , 1985 .

[42]  N. J. de Vos,et al.  Multiobjective training of artificial neural networks for rainfall‐runoff modeling , 2008 .