Practical "Paritizing" of Emerson-Lei Automata

We introduce a new algorithm that takes a Transition-based Emerson-Lei Automaton (TELA), that is, an ω-automaton whose acceptance condition is an arbitrary Boolean formula on sets of transitions to be seen infinitely or finitely often, and converts it into a Transition-based Parity Automaton (TPA). To reduce the size of the output TPA, the algorithm combines and optimizes two procedures based on a latest appearance record principle, and introduces a partial degeneralization. Our motivation is to use this algorithm to improve our LTL synthesis tool, where producing deterministic parity automata is an intermediate step.

[1]  Michael Luttenberger,et al.  Practical synthesis of reactive systems from LTL specifications via parity games , 2019, Acta Informatica.

[2]  Jan Kretínský,et al.  Deterministic Automata for the (F,G)-fragment of LTL , 2012, CAV.

[3]  Jan Kretínský,et al.  Owl: A Library for ω-Words, Automata, and LTL , 2018, ATVA.

[4]  Nir Piterman,et al.  From Nondeterministic Buchi and Streett Automata to Deterministic Parity Automata , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[5]  Alexandre Duret-Lutz,et al.  Spot 2 . 0 — a framework for LTL and ω-automata manipulation , 2016 .

[6]  Olivier Carton,et al.  Computing the Rabin Index of a Parity Automaton , 1999, RAIRO Theor. Informatics Appl..

[7]  Moshe Y. Vardi,et al.  On omega-Automata and Temporal Logic (Preliminary Report) , 1989, STOC 1989.

[8]  Moshe Y. Vardi,et al.  On ω-automata and temporal logic , 1989, STOC '89.

[9]  Salomon Sickert,et al.  LTL to Deterministic Emerson-Lei Automata , 2017, GandALF.

[10]  Christof Löding Optimal Bounds for Transformations of omega-Automata , 1999, FSTTCS.

[11]  Alexandre Duret-Lutz,et al.  LTL translation improvements in Spot 1.0 , 2014, Int. J. Crit. Comput. Based Syst..

[12]  Maximilien Colange,et al.  Reactive Synthesis from LTL Specification with Spot , 2018 .

[13]  Christel Baier,et al.  Generic Emptiness Check for Fun and Profit , 2019, ATVA.

[14]  Roman R. Redziejowski An Improved Construction of Deterministic Omega-automaton Using Derivatives , 2012, Fundam. Informaticae.

[15]  Robert K. Brayton,et al.  Deterministic w Automata vis-a-vis Deterministic Buchi Automata , 1994, ISAAC.

[16]  Alexandre Duret-Lutz,et al.  Spot 2.0 - A Framework for LTL and \omega -Automata Manipulation , 2016, ATVA.

[17]  Jan Kretínský,et al.  The Hanoi Omega-Automata Format , 2015, CAV.

[18]  Jan Strejček,et al.  ltl3tela: LTL to Small Deterministic or Nondeterministic Emerson-Lei Automata , 2019, ATVA.

[19]  Alexandre Duret-Lutz,et al.  Compositional Approach to Suspension and Other Improvements to LTL Translation , 2013, SPIN.

[20]  Chin-Laung Lei,et al.  Modalities for Model Checking: Branching Time Logic Strikes Back , 1987, Sci. Comput. Program..

[21]  Jan Kretínský,et al.  One Theorem to Rule Them All: A Unified Translation of LTL into ω-Automata , 2018, LICS.

[22]  Paul Gastin,et al.  Fast LTL to Büchi Automata Translation , 2001, CAV.

[23]  Krishnendu Chatterjee,et al.  Graph Games and Reactive Synthesis , 2018, Handbook of Model Checking.

[24]  Christof Löding,et al.  Methods for the Transformation of ω-Automata : Complexity and Connection to Second Order Logic , 1998 .

[25]  Jan Kretínský,et al.  Index Appearance Record for Transforming Rabin Automata into Parity Automata , 2017, TACAS.