Practical "Paritizing" of Emerson-Lei Automata
暂无分享,去创建一个
[1] Michael Luttenberger,et al. Practical synthesis of reactive systems from LTL specifications via parity games , 2019, Acta Informatica.
[2] Jan Kretínský,et al. Deterministic Automata for the (F,G)-fragment of LTL , 2012, CAV.
[3] Jan Kretínský,et al. Owl: A Library for ω-Words, Automata, and LTL , 2018, ATVA.
[4] Nir Piterman,et al. From Nondeterministic Buchi and Streett Automata to Deterministic Parity Automata , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).
[5] Alexandre Duret-Lutz,et al. Spot 2 . 0 — a framework for LTL and ω-automata manipulation , 2016 .
[6] Olivier Carton,et al. Computing the Rabin Index of a Parity Automaton , 1999, RAIRO Theor. Informatics Appl..
[7] Moshe Y. Vardi,et al. On omega-Automata and Temporal Logic (Preliminary Report) , 1989, STOC 1989.
[8] Moshe Y. Vardi,et al. On ω-automata and temporal logic , 1989, STOC '89.
[9] Salomon Sickert,et al. LTL to Deterministic Emerson-Lei Automata , 2017, GandALF.
[10] Christof Löding. Optimal Bounds for Transformations of omega-Automata , 1999, FSTTCS.
[11] Alexandre Duret-Lutz,et al. LTL translation improvements in Spot 1.0 , 2014, Int. J. Crit. Comput. Based Syst..
[12] Maximilien Colange,et al. Reactive Synthesis from LTL Specification with Spot , 2018 .
[13] Christel Baier,et al. Generic Emptiness Check for Fun and Profit , 2019, ATVA.
[14] Roman R. Redziejowski. An Improved Construction of Deterministic Omega-automaton Using Derivatives , 2012, Fundam. Informaticae.
[15] Robert K. Brayton,et al. Deterministic w Automata vis-a-vis Deterministic Buchi Automata , 1994, ISAAC.
[16] Alexandre Duret-Lutz,et al. Spot 2.0 - A Framework for LTL and \omega -Automata Manipulation , 2016, ATVA.
[17] Jan Kretínský,et al. The Hanoi Omega-Automata Format , 2015, CAV.
[18] Jan Strejček,et al. ltl3tela: LTL to Small Deterministic or Nondeterministic Emerson-Lei Automata , 2019, ATVA.
[19] Alexandre Duret-Lutz,et al. Compositional Approach to Suspension and Other Improvements to LTL Translation , 2013, SPIN.
[20] Chin-Laung Lei,et al. Modalities for Model Checking: Branching Time Logic Strikes Back , 1987, Sci. Comput. Program..
[21] Jan Kretínský,et al. One Theorem to Rule Them All: A Unified Translation of LTL into ω-Automata , 2018, LICS.
[22] Paul Gastin,et al. Fast LTL to Büchi Automata Translation , 2001, CAV.
[23] Krishnendu Chatterjee,et al. Graph Games and Reactive Synthesis , 2018, Handbook of Model Checking.
[24] Christof Löding,et al. Methods for the Transformation of ω-Automata : Complexity and Connection to Second Order Logic , 1998 .
[25] Jan Kretínský,et al. Index Appearance Record for Transforming Rabin Automata into Parity Automata , 2017, TACAS.