Interlayer coupling in the superconducting state of iron-based superconductors

[1]  Wenshan Hong,et al.  Growth and characterization of superconducting Ca$_{1-x}$Na$_x$Fe$_2$As$_2$ single crystals by NaAs-flux method , 2022, Chinese Physics B.

[2]  J. Tse,et al.  Theory-directed discovery of high-temperature superconductivity in clathrate hydrides at high pressure , 2022, Innovation.

[3]  T. Fennell,et al.  Dispersion of neutron spin resonance mode in Ba0.67K0.33Fe2As2 , 2021, Chinese Physics B.

[4]  H. Wen,et al.  Superconductivity in nickel-based 112 systems , 2021, The Innovation.

[5]  M. Eremets,et al.  High-temperature superconductivity , 2021, Nature Reviews Physics.

[6]  Zu-Yan Xu,et al.  Genuine electronic structure and superconducting gap structure in (Ba0.6K0.4)Fe2As2 superconductor. , 2021, Science bulletin.

[7]  T. Hu,et al.  Strong Pauli paramagnetic effect in the upper critical field of KCa2Fe4As4F2 , 2019, Science China Physics, Mechanics & Astronomy.

[8]  B. Büchner,et al.  Strong spin resonance mode associated with suppression of soft magnetic ordering in hole-doped Ba1-xNaxFe2As2 , 2019, npj Quantum Materials.

[9]  H. Hosono,et al.  Recent advances in iron-based superconductors toward applications , 2017, 1710.08574.

[10]  D. Hohl,et al.  The thermal triple-axis-spectrometer EIGER at the continuous spallation source SINQ , 2017 .

[11]  Zhi-Cheng Wang,et al.  Superconductivity in KCa2Fe4As4F2 with Separate Double Fe2As2 Layers. , 2016, Journal of the American Chemical Society.

[12]  E. Abrahams,et al.  High Temperature Superconductivity in Iron Pnictides and Chalcogenides , 2016, 1604.03566.

[13]  Y. Yoshida,et al.  New-Structure-Type Fe-Based Superconductors: CaAFe4As4 (A = K, Rb, Cs) and SrAFe4As4 (A = Rb, Cs). , 2016, Journal of the American Chemical Society.

[14]  J. Thompson,et al.  Unconventional superconductivity in heavy-fermion compounds , 2015 .

[15]  M. Kanatzidis,et al.  Double-Q spin-density wave in iron arsenide superconductors , 2015, Nature Physics.

[16]  P. Dai Antiferromagnetic order and spin dynamics in iron-based superconductors , 2015, 1503.02340.

[17]  M. Abdel-Hafiez,et al.  Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe. , 2015, Nature materials.

[18]  T. Xiang,et al.  Iron-based high transition temperature superconductors , 2014, 1403.2612.

[19]  Meng Wang,et al.  Doping dependence of spin excitations and its correlations with high-temperature superconductivity in iron pnictides , 2013, Nature Communications.

[20]  J. Tranquada,et al.  Superconductivity, antiferromagnetism, and neutron scattering , 2013, 1301.5888.

[21]  M. Dressel,et al.  Universal sheet resistance and revised phase diagram of the cuprate high-temperature superconductors , 2012, Proceedings of the National Academy of Sciences.

[22]  H. Eisaki,et al.  Relationship between crystal structure and superconductivity in iron-based superconductors , 2012 .

[23]  S. Hayden,et al.  Nature of magnetic excitations in superconducting BaFe1.9Ni0.1As2 , 2012, Nature Physics.

[24]  Takashi Takahashi,et al.  Fe-based superconductors: an angle-resolved photoemission spectroscopy perspective , 2011, 1110.6751.

[25]  Q. Ge,et al.  Nodal superconducting-gap structure in ferropnictide superconductor BaFe2(As0.7P0.3)2 , 2011, Nature Physics.

[26]  P. Hirschfeld,et al.  Gap symmetry and structure of Fe-based superconductors , 2011, 1106.3712.

[27]  Fa Wang,et al.  The Electron-Pairing Mechanism of Iron-Based Superconductors , 2011, Science.

[28]  T. Xiang,et al.  Neutron Scattering Studies of spin excitations in hole-doped Ba0.67K0.33Fe2As2 superconductor , 2010, Scientific reports.

[29]  R. Greene,et al.  High-temperature superconductivity in iron-based materials , 2010, 1006.4618.

[30]  X. -. Wang,et al.  Superconductivity above 33 K in (Ca1 − xNax)Fe2As2 , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[31]  D. Johnston,et al.  The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides , 2010, 1005.4392.

[32]  A. Savici,et al.  From (pi,0) magnetic order to superconductivity with (pi,pi) magnetic resonance in Fe(1.02)Te(1-x)Se(x). , 2010, Nature materials.

[33]  K. Deguchi,et al.  Anion height dependence of Tc for the Fe-based superconductor , 2010, 1001.1801.

[34]  K. Hradil,et al.  Normal-state spin dynamics and temperature-dependent spin-resonance energy in optimally doped BaFe 1.85 Co 0.15 As 2 , 2009, 0907.3632.

[35]  X. H. Chen,et al.  Spin waves and magnetic exchange interactions in CaFe 2 As 2 , 2009, 0903.2686.

[36]  Y. Li,et al.  A universal relationship between magnetic resonance and superconducting gap in unconventional superconductors , 2009, 0903.2291.

[37]  J. Schmalian,et al.  PAIRING SYMMETRY AND PAIRING STATE IN FERROPNICTIDES: THEORETICAL OVERVIEW , 2009, 0901.4790.

[38]  M. Kanatzidis,et al.  Unconventional superconductivity in Ba0.6K0.4Fe2As2 from inelastic neutron scattering , 2008, Nature.

[39]  F. Balakirev,et al.  Nearly isotropic superconductivity in (Ba,K)Fe2As2 , 2008, Nature.

[40]  X. H. Chen,et al.  Different resistivity response to spin-density wave and superconductivity at 20 K in Ca1−xNaxFe2As2 , 2008, 0806.4279.

[41]  B. Keimer,et al.  Inelastic neutron scattering study of spin excitations in the superconducting state of high temperature superconductors , 2007 .

[42]  M. Eschrig The effect of collective spin-1 excitations on electronic spectra in high- Tc superconductors , 2005, cond-mat/0510286.

[43]  M. Cantoni,et al.  Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system , 1993, Nature.

[44]  P. Bourges,et al.  Neutron scattering study of the YBa2Cu3O6+x system , 1991 .

[45]  Peter D. Johnson,et al.  Iron-Based Superconductivity , 2015 .