Shannon entropy: a rigorous notion at the crossroads between probability, information theory, dynamical systems and statistical physics
暂无分享,去创建一个
[1] Giovanni Gallavotti,et al. Chaotic dynamics, fluctuations, nonequilibrium ensembles. , 1997, Chaos.
[2] J. Crutchfield,et al. Measures of statistical complexity: Why? , 1998 .
[3] B. McMillan. The Basic Theorems of Information Theory , 1953 .
[4] J. Bricmont. SCIENCE OF CHAOS OR CHAOS IN SCIENCE? , 1995, chao-dyn/9603009.
[5] E. T. Jaynes,et al. Where do we Stand on Maximum Entropy , 1979 .
[6] Vladimir Vovk,et al. Kolmogorov's Contributions to the Foundations of Probability , 2003, Probl. Inf. Transm..
[7] L. Brillouin,et al. The Negentropy Principle of Information , 1953 .
[8] A. Si,et al. Entropy,Large Deviations,and Statistical Mechanics , 2011 .
[9] Wolfgang Krieger,et al. On entropy and generators of measure-preserving transformations , 1970 .
[10] Seth Lloyd,et al. Information measures, effective complexity, and total information , 1996 .
[11] Michael Leyton,et al. A generative theory of shape , 2004, Proceedings Shape Modeling Applications, 2004..
[12] James J. Kay,et al. Self-Organization In Living Systems , 2006 .
[13] Pierre Gaspard,et al. Erratum: Time-Reversed Dynamical Entropy and Irreversibility in Markovian Random Processes , 2004 .
[14] S. Frank. The common patterns of nature , 2009, Journal of evolutionary biology.
[15] H. Touchette. The large deviation approach to statistical mechanics , 2008, 0804.0327.
[16] D. Gillies. Philosophical Theories of Probability , 2000 .
[17] Hung T. Nguyen,et al. A course in stochastic processes , 1996 .
[18] Debra J. Searles,et al. The Fluctuation Theorem , 2002 .
[19] Gregory J. Chaitin,et al. On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.
[20] Jan M. Van Campenhout,et al. Maximum entropy and conditional probability , 1981, IEEE Trans. Inf. Theory.
[21] David McMahon. A Brief Introduction to Information Theory , 2008 .
[22] F. Ledrappier,et al. A proof of the estimation from below in Pesin's entropy formula , 1982, Ergodic Theory and Dynamical Systems.
[23] E. Jaynes. On the rationale of maximum-entropy methods , 1982, Proceedings of the IEEE.
[24] Ray J. Solomonoff,et al. Complexity-based induction systems: Comparisons and convergence theorems , 1978, IEEE Trans. Inf. Theory.
[25] H. Kantz,et al. Nonlinear time series analysis , 1997 .
[26] R. Gray. Entropy and Information Theory , 1990, Springer New York.
[27] P. Landsberg,et al. Simple measure for complexity , 1999 .
[28] A. Sokal,et al. Exponential convergence to equilibrium for a class of random-walk models , 1989 .
[29] Eli Glasner,et al. Ergodic Theory via Joinings , 2003 .
[30] P. Grassberger. Toward a quantitative theory of self-generated complexity , 1986 .
[31] Miroslav Dudík,et al. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation , 2008 .
[32] Nicolas Schmidt,et al. Quantifying Neural Correlations Using Lempel-Ziv Complexity , 2008 .
[33] Angelo Vulpiani,et al. Chaos and Coarse Graining in Statistical Mechanics , 2008 .
[34] J. Ord,et al. Characterization Problems in Mathematical Statistics , 1975 .
[35] Rudolf Clausius,et al. The Mechanical Theory of Heat: With Its Applications to the Steam-Engine and to the Physical Properties of Bodies , 2015 .
[36] D. Chandler,et al. Introduction To Modern Statistical Mechanics , 1987 .
[37] A. Sokal. Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms , 1997 .
[38] R. Balian. Entropy, a Protean Concept , 2004 .
[39] L. Pezard,et al. Entropy estimation of very short symbolic sequences. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[40] David Ruelle,et al. Ludwig Boltzmann. The Man Who Trusted Atoms , 1998 .
[41] Wolfgang Krieger. On unique ergodicity , 1972 .
[42] Pierre Gaspard,et al. Toward a probabilistic approach to complex systems , 1994 .
[43] Y. Pesin,et al. Dimension theory in dynamical systems , 1997 .
[44] Calyampudi R. Rao,et al. Characterization Problems in Mathematical Statistics , 1976 .
[45] L. Szilard. über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .
[46] Lawrence S. Schulman,et al. We know why coffee cools , 2010 .
[47] T. Cover,et al. A sandwich proof of the Shannon-McMillan-Breiman theorem , 1988 .
[48] A. Maritan,et al. Applications of the principle of maximum entropy: from physics to ecology , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.
[49] A. Lesne,et al. On the Second Law of Thermodynamics and the Piston Problem , 2004 .
[50] Kevin Ford,et al. From Kolmogorov’s theorem on empirical distribution to number theory , 2007 .
[51] Aaron D. Wyner,et al. Some asymptotic properties of the entropy of a stationary ergodic data source with applications to data compression , 1989, IEEE Trans. Inf. Theory.
[52] Robert P. Anderson,et al. Maximum entropy modeling of species geographic distributions , 2006 .
[53] E. T. Jaynes,et al. Papers on probability, statistics and statistical physics , 1983 .
[54] Jaroslav Šesták. Chapter 7 – THERMODYNAMICS AND THERMOSTATICS , 2005 .
[55] Tomohiko Yamaguchi,et al. Entropy balance in distributed reversible Gray–Scott model , 2010 .
[56] Joel L. Lebowitz,et al. Macroscopic laws, microscopic dynamics, time's arrow and Boltzmann's entropy , 1993 .
[57] H. White. Algorithmic complexity of points in dynamical systems , 1993, Ergodic Theory and Dynamical Systems.
[58] Hans-Otto Georgii. Chapter Three. Probabilistic Aspects of Entropy , 2003 .
[59] Wojciech Hubert Zurek,et al. Maxwell’s Demon, Szilard’s Engine and Quantum Measurements , 2003, quant-ph/0301076.
[60] Giorgio Parisi. Complexity and Intelligence , 2003 .
[61] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[62] L. Brillouin,et al. Physical Entropy and Information. II , 1951 .
[63] L. Pezard,et al. Delay independence of mutual-information rate of two symbolic sequences. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[64] John Scales Avery,et al. Information theory and evolution , 2003 .
[65] E. Cohen,et al. Note on Two Theorems in Nonequilibrium Statistical Mechanics , 1999, cond-mat/9903418.
[66] A. Vulpiani,et al. Kolmogorov’s Legacy about Entropy, Chaos, and Complexity , 2003 .
[67] Ricardo Fraiman,et al. Limit theorems for sequences of random trees , 2004 .
[68] Samuel Karlin,et al. A First Course on Stochastic Processes , 1968 .
[69] Rampal S Etienne,et al. Entropy Maximization and the Spatial Distribution of Species , 2010, The American Naturalist.
[70] H. Georgii. Probabilistic aspects of entropy , 2000 .
[71] R. Badii,et al. Complexity: Hierarchical Structures and Scaling in Physics , 1997 .
[72] Imre Csiszár,et al. Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .
[73] Alexander N Gorban,et al. Quasi-equilibrium closure hierarchies for the Boltzmann equation , 2003, cond-mat/0305599.
[74] Eytan Domany,et al. The Entropy of a Binary Hidden Markov Process , 2005, ArXiv.
[75] Abraham Lempel,et al. A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.
[76] Robert M. Gray,et al. Entropy and Information , 1990 .
[77] Anatole Katok,et al. On local entropy , 1983 .
[78] David P Ruelle. Extending the definition of entropy to nonequilibrium steady states , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[79] L. Brillouin,et al. Science and information theory , 1956 .
[80] M. Tribus,et al. Energy and information , 1971 .
[81] Jean-Louis Dessalles. A structural model of intuitive probability , 2011, ArXiv.
[82] Grégoire Nicolis,et al. Self-Organization in nonequilibrium systems , 1977 .
[83] Ilya Prigogine,et al. Thermodynamics of Irreversible Processes , 2018, Principles of Thermodynamics.
[84] Inés Samengo. Estimating probabilities from experimental frequencies. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[85] E. Jaynes. Information Theory and Statistical Mechanics , 1957 .
[86] A. Einstein,et al. Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes [AdP 33, 1275 (1910)] , 2005, Annalen der Physik.
[87] Fady Alajaji,et al. Rényi's divergence and entropy rates for finite alphabet Markov sources , 2001, IEEE Trans. Inf. Theory.
[88] L. Breiman. The Individual Ergodic Theorem of Information Theory , 1957 .
[89] Imre Csisźar,et al. The Method of Types , 1998, IEEE Trans. Inf. Theory.
[90] E. Jaynes. The well-posed problem , 1973 .
[91] I. N. Sanov. On the probability of large deviations of random variables , 1958 .
[92] I. Csiszár. $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .
[93] Joel L. Lebowitz,et al. Boltzmann's Entropy and Time's Arrow , 1993 .
[94] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[95] Abraham Lempel,et al. On the Complexity of Finite Sequences , 1976, IEEE Trans. Inf. Theory.
[96] E. Schrödinger. What is life? : the physical aspect of the living cell , 1944 .
[97] R. Balian,et al. Information in statistical physics , 2005, cond-mat/0501322.
[98] L. Brillouin. Maxwell's Demon Cannot Operate: Information and Entropy. I , 1951 .
[99] R. A. Leibler,et al. On Information and Sufficiency , 1951 .
[100] Per Martin-Löf,et al. The Definition of Random Sequences , 1966, Inf. Control..
[101] A. Wehrl. General properties of entropy , 1978 .
[102] S. Ikeda. On characterization of the kullback-leibler mean information for continuous probability distributions , 1962 .
[103] Shun-ichi Amari,et al. Methods of information geometry , 2000 .
[104] R. T. Cox. Probability, frequency and reasonable expectation , 1990 .
[105] Masahito Ueda,et al. Minimal energy cost for thermodynamic information processing: measurement and information erasure. , 2008, Physical review letters.
[106] Paul M. B. Vitányi,et al. An Introduction to Kolmogorov Complexity and Its Applications , 1993, Graduate Texts in Computer Science.
[108] Abraham Lempel,et al. Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.
[109] Claudine Robert. AN ENTROPY CONCENTRATION THEOREM: APPLICATIONS IN ARTIFICIAL INTELLIGENCE AND DESCRIPTIVE STATISTICS , 1990 .
[110] A. Kolmogorov. Three approaches to the quantitative definition of information , 1968 .
[111] Giovanni Gallavotti,et al. Entropy, thermostats, and chaotic hypothesis. , 2006, Chaos.
[112] P. Levy. Processus stochastiques et mouvement brownien , 1948 .
[113] E. Jaynes. The Minimum Entropy Production Principle , 1980 .
[114] Shunsuke Ihara,et al. Information theory - for continuous systems , 1993 .
[115] D. A. Bell. Physical Entropy and Information , 1952 .
[116] C. Cercignani. The Boltzmann equation and its applications , 1988 .
[117] A. Lesne,et al. Feature context-dependency and complexity-reduction in probability landscapes for integrative genomics , 2008, Theoretical Biology and Medical Modelling.
[118] Annick Lesne,et al. The discrete versus continuous controversy in physics , 2007, Mathematical Structures in Computer Science.
[119] R. Landauer,et al. Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..