The Majority of Animal Genes Are Required for Wild-Type Fitness

[1]  L. B. Snoek,et al.  A fitness assay for comparing RNAi effects across multiple C. elegans genotypes , 2011, BMC Genomics.

[2]  Vipin T. Sreedharan,et al.  A spatial and temporal map of C. elegans gene expression. , 2011, Genome research.

[3]  Eugene V. Koonin,et al.  Constraints and plasticity in genome and molecular-phenome evolution , 2010, Nature Reviews Genetics.

[4]  Robin D Dowell,et al.  Genotype to Phenotype: A Complex Problem , 2010, Science.

[5]  Gary D Bader,et al.  The Genetic Landscape of a Cell , 2010, Science.

[6]  Jocelyn E. Krebs,et al.  Lewin's Genes X , 2009 .

[7]  Kimberly Van Auken,et al.  WormBase: a comprehensive resource for nematode research , 2009, Nucleic Acids Res..

[8]  Arun K. Ramani,et al.  High resolution transcriptome maps for wild-type and nonsense-mediated decay-defective Caenorhabditis elegans , 2009, Genome Biology.

[9]  Jianzhi Zhang,et al.  Why Is the Correlation between Gene Importance and Gene Evolutionary Rate So Weak? , 2009, PLoS genetics.

[10]  David Botstein,et al.  The Repertoire and Dynamics of Evolutionary Adaptations to Controlled Nutrient-Limited Environments in Yeast , 2008, PLoS genetics.

[11]  Sean R. Collins,et al.  A comprehensive strategy enabling high-resolution functional analysis of the yeast genome , 2008, Nature Methods.

[12]  Hiroaki Kitano,et al.  Biological robustness , 2008, Nature Reviews Genetics.

[13]  Robert P. St.Onge,et al.  The Chemical Genomic Portrait of Yeast: Uncovering a Phenotype for All Genes , 2008, Science.

[14]  Erik L. L. Sonnhammer,et al.  InParanoid 6: eukaryotic ortholog clusters with inparalogs , 2007, Nucleic Acids Res..

[15]  Joshua M. Stuart,et al.  A global analysis of genetic interactions in Caenorhabditis elegans , 2007, Journal of biology.

[16]  H. Kitano Towards a theory of biological robustness , 2007, Molecular systems biology.

[17]  B. Dickson,et al.  A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila , 2007, Nature.

[18]  H. Bussey,et al.  Exploring genetic interactions and networks with yeast , 2007, Nature Reviews Genetics.

[19]  Harald Hutter,et al.  Axon guidance genes identified in a large-scale RNAi screen using the RNAi-hypersensitive Caenorhabditis elegans strain nre-1(hd20) lin-15b(hd126) , 2007, Proceedings of the National Academy of Sciences.

[20]  E. Ruppin,et al.  Multiple knockout analysis of genetic robustness in the yeast metabolic network , 2006, Nature Genetics.

[21]  Ben Lehner,et al.  Combinatorial RNA interference in Caenorhabditis elegans reveals that redundancy between gene duplicates can be maintained for more than 80 million years of evolution , 2006, Genome Biology.

[22]  A. Fraser,et al.  Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways , 2006, Nature Genetics.

[23]  C. Pál,et al.  An integrated view of protein evolution , 2006, Nature Reviews Genetics.

[24]  Theresa Stiernagle Maintenance of C. elegans. , 2006, WormBook : the online review of C. elegans biology.

[25]  A. Fraser,et al.  Loss of LIN-35, the Caenorhabditis elegans ortholog of the tumor suppressor p105Rb, results in enhanced RNA interference , 2006, Genome Biology.

[26]  Harrison W. Gabel,et al.  Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants , 2005, Nature.

[27]  A. Fraser,et al.  Chromatin regulation and sumoylation in the inhibition of Ras‐induced vulval development in Caenorhabditis elegans , 2005, The EMBO journal.

[28]  A. Coulson,et al.  Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans , 2005, Nature.

[29]  Y. Pilpel,et al.  Transcription control reprogramming in genetic backup circuits , 2005, Nature Genetics.

[30]  A. Eyre-Walker,et al.  The genomic rate of adaptive amino acid substitution in Drosophila. , 2004, Molecular biology and evolution.

[31]  C. Pál,et al.  Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast , 2004, Nature.

[32]  C. Pál,et al.  The evolutionary dynamics of eukaryotic gene order , 2004, Nature Reviews Genetics.

[33]  Gary D Bader,et al.  Global Mapping of the Yeast Genetic Interaction Network , 2004, Science.

[34]  Jeffrey M Good,et al.  Molecular correlates of genes exhibiting RNAi phenotypes in Caenorhabditis elegans. , 2003, Genome research.

[35]  R. Durbin,et al.  The Genome Sequence of Caenorhabditis briggsae: A Platform for Comparative Genomics , 2003, PLoS biology.

[36]  J. W. Campbell,et al.  Experimental Determination and System Level Analysis of Essential Genes in Escherichia coli MG1655 , 2003, Journal of bacteriology.

[37]  Andrew G Fraser,et al.  Identification of genes that protect the C. elegans genome against mutations by genome-wide RNAi. , 2003, Genes & development.

[38]  Y. Dong,et al.  Systematic functional analysis of the Caenorhabditis elegans genome using RNAi , 2003, Nature.

[39]  David Botstein,et al.  Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[40]  L. Hurst The Ka/Ks ratio: diagnosing the form of sequence evolution. , 2002, Trends in genetics : TIG.

[41]  Ronald W. Davis,et al.  Functional profiling of the Saccharomyces cerevisiae genome , 2002, Nature.

[42]  A. E. Hirsh,et al.  Protein dispensability and rate of evolution , 2001, Nature.

[43]  M. Pfaffl,et al.  A new mathematical model for relative quantification in real-time RT-PCR. , 2001, Nucleic acids research.

[44]  B. Garvik,et al.  Principles for the Buffering of Genetic Variation , 2001, Science.

[45]  P. Zipperlen,et al.  Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans , 2000, Genome Biology.

[46]  Ziheng Yang,et al.  Statistical methods for detecting molecular adaptation , 2000, Trends in Ecology & Evolution.

[47]  S. Rutherford,et al.  From genotype to phenotype: buffering mechanisms and the storage of genetic information , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[48]  P. Zipperlen,et al.  Functional genomic analysis of C. elegans chromosome I by systematic RNA interference , 2000, Nature.

[49]  Ronald W. Davis,et al.  Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. , 1999, Science.

[50]  A. Fire,et al.  Specific interference by ingested dsRNA , 1998, Nature.

[51]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[52]  J. Hodgkin,et al.  Natural variation and copulatory plug formation in Caenorhabditis elegans. , 1997, Genetics.

[53]  J. Sulston,et al.  The genome of Caenorhabditis elegans. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[54]  D. Baillie,et al.  Genetic analysis of a major segment [LGV(left)] of the genome of Caenorhabditis elegans. , 1991, Genetics.

[55]  Waddington Ch,et al.  Canalization of Development and Genetic Assimilation of Acquired Characters , 1959 .

[56]  K. Kemphues,et al.  Essential genes. , 2005, WormBook : the online review of C. elegans biology.

[57]  Masayoshi Enami,et al.  Reverse genetics. , 2002, Vaccine.

[58]  C. H. WADDINGTON,et al.  Canalization of Development and Genetic Assimilation of Acquired Characters , 1959, Nature.

[59]  Hunter B. Fraser,et al.  Title: Functional Genomic Analysis of the Rates of Protein Evolution , 2022 .