Spatial expression of transcription factors in Drosophila embryonic organ development

BackgroundSite-specific transcription factors (TFs) bind DNA regulatory elements to control expression of target genes, forming the core of gene regulatory networks. Despite decades of research, most studies focus on only a small number of TFs and the roles of many remain unknown.ResultsWe present a systematic characterization of spatiotemporal gene expression patterns for all known or predicted Drosophila TFs throughout embryogenesis, the first such comprehensive study for any metazoan animal. We generated RNA expression patterns for all 708 TFs by in situ hybridization, annotated the patterns using an anatomical controlled vocabulary, and analyzed TF expression in the context of organ system development. Nearly all TFs are expressed during embryogenesis and more than half are specifically expressed in the central nervous system. Compared to other genes, TFs are enriched early in the development of most organ systems, and throughout the development of the nervous system. Of the 535 TFs with spatially restricted expression, 79% are dynamically expressed in multiple organ systems while 21% show single-organ specificity. Of those expressed in multiple organ systems, 77 TFs are restricted to a single organ system either early or late in development. Expression patterns for 354 TFs are characterized for the first time in this study.ConclusionsWe produced a reference TF dataset for the investigation of gene regulatory networks in embryogenesis, and gained insight into the expression dynamics of the full complement of TFs controlling the development of each organ system.

[1]  Raymond K. Auerbach,et al.  A User's Guide to the Encyclopedia of DNA Elements (ENCODE) , 2011, PLoS biology.

[2]  Debra L. Fulton,et al.  TFCat: the curated catalog of mouse and human transcription factors , 2009, Genome Biology.

[3]  E. Frise,et al.  Systematic image-driven analysis of the spatial Drosophila embryonic expression landscape , 2010, Molecular systems biology.

[4]  G. Rubin,et al.  Tools for neuroanatomy and neurogenetics in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[5]  Teuvo Kohonen,et al.  Essentials of the self-organizing map , 2013, Neural Networks.

[6]  Richard Weiszmann,et al.  Determination of gene expression patterns using high-throughput RNA in situ hybridization to whole-mount Drosophila embryos , 2009, Nature Protocols.

[7]  David Landsman,et al.  B-ZIP proteins encoded by the Drosophila genome: evaluation of potential dimerization partners. , 2002, Genome research.

[8]  Charless C. Fowlkes,et al.  A Quantitative Spatiotemporal Atlas of Gene Expression in the Drosophila Blastoderm , 2008, Cell.

[9]  Philip Cayting,et al.  An encyclopedia of mouse DNA elements (Mouse ENCODE) , 2012, Genome Biology.

[10]  M. Baylies,et al.  Daughterless dictates Twist activity in a context-dependent manner during somatic myogenesis. , 2008, Developmental biology.

[11]  Amos Bairoch,et al.  The PROSITE database , 2005, Nucleic Acids Res..

[12]  J. Ikeda,et al.  Novel Nuclear Shuttle Proteins, HDBP1 and HDBP2, Bind to Neuronal Cell-specific cis-Regulatory Element in the Promoter for the Human Huntington's Disease Gene* , 2004, Journal of Biological Chemistry.

[13]  Sarah A Teichmann,et al.  The developmental expression dynamics of Drosophila melanogaster transcription factors , 2010, Genome Biology.

[14]  Thorsten Henrich,et al.  4DXpress: a database for cross-species expression pattern comparisons , 2007, Nucleic Acids Res..

[15]  Saurabh Sinha,et al.  FlyFactorSurvey: a database of Drosophila transcription factor binding specificities determined using the bacterial one-hybrid system , 2010, Nucleic Acids Res..

[16]  J Schultz,et al.  SMART, a simple modular architecture research tool: identification of signaling domains. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  G. Bell,et al.  GEISHA, a whole‐mount in situ hybridization gene expression screen in chicken embryos , 2004, Developmental dynamics : an official publication of the American Association of Anatomists.

[18]  James B. Brown,et al.  Diversity and dynamics of the Drosophila transcriptome , 2014, Nature.

[19]  G. Rubin,et al.  Glass encodes a site-specific DNA-binding protein that is regulated in response to positional signals in the developing Drosophila eye. , 1991, Genes & development.

[20]  Rolf Apweiler,et al.  InterProScan - an integration platform for the signature-recognition methods in InterPro , 2001, Bioinform..

[21]  Zhiyu Huang,et al.  The Glucose Transporter (GLUT4) Enhancer Factor Is Required for Normal Wing Positioning in Drosophila , 2008, Genetics.

[22]  Sarah A. Teichmann,et al.  FlyTF: a systematic review of site-specific transcription factors in the fruit fly Drosophila melanogaster , 2006, Bioinform..

[23]  V. Hartenstein,et al.  Embryonic development of the Drosophila corpus cardiacum, a neuroendocrine gland with similarity to the vertebrate pituitary, is controlled by sine oculis and glass. , 2004, Developmental biology.

[24]  G. Rubin,et al.  Global analysis of patterns of gene expression during Drosophila embryogenesis , 2007, Genome Biology.

[25]  Y. Kohara,et al.  A multi-well version of in situ hybridization on whole mount embryos of Caenorhabditis elegans. , 1996, Nucleic acids research.

[26]  Gos Micklem,et al.  Supporting Online Material Materials and Methods Figs. S1 to S50 Tables S1 to S18 References Identification of Functional Elements and Regulatory Circuits by Drosophila Modencode , 2022 .

[27]  D. Montell,et al.  Castor is required for Hedgehog-dependent cell-fate specification and follicle stem cell maintenance in Drosophila oogenesis , 2013, Proceedings of the National Academy of Sciences.

[28]  B. Herrmann,et al.  Homologs of the mouse Brachyury gene are involved in the specification of posterior terminal structures in Drosophila, Tribolium, and Locusta. , 1994, Genes & development.

[29]  A. Syed,et al.  A Unique DNA Binding Domain Converts T-Cell Factors into Strong Wnt Effectors , 2007, Molecular and Cellular Biology.

[30]  David M. Shotton,et al.  FlyTED: the Drosophila Testis Gene Expression Database , 2009, Nucleic Acids Res..

[31]  Gregor Eichele,et al.  GenePaint.org: an atlas of gene expression patterns in the mouse embryo , 2004, Nucleic Acids Res..

[32]  Charles Blatti,et al.  Global analysis of Drosophila Cys2-His2 zinc finger proteins reveals a multitude of novel recognition motifs and binding determinants , 2013, Genome research.

[33]  Robert L. Grossman,et al.  A cis-regulatory map of the Drosophila genome , 2011, Nature.

[34]  Jonathan B L Bard,et al.  Anatomics: the intersection of anatomy and bioinformatics , 2005, Journal of anatomy.

[35]  Delphine Dauga,et al.  The ANISEED database: digital representation, formalization, and elucidation of a chordate developmental program. , 2010, Genome research.

[36]  Christian A. Grove,et al.  A compendium of Caenorhabditis elegans regulatory transcription factors: a resource for mapping transcription regulatory networks , 2005, Genome Biology.

[37]  Christof Niehrs,et al.  An atlas of differential gene expression during early Xenopus embryogenesis , 2005, Mechanisms of Development.

[38]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[39]  Peter J. Bickel,et al.  The Developmental Transcriptome of Drosophila melanogaster , 2010, Nature.

[40]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[41]  E. Birney,et al.  A Transcription Factor Collective Defines Cardiac Cell Fate and Reflects Lineage History , 2012, Cell.

[42]  J. Kennison,et al.  A Double-Bromodomain Protein, FSH-S, Activates the Homeotic Gene Ultrabithorax through a Critical Promoter-Proximal Region , 2007, Molecular and Cellular Biology.

[43]  Bart Deplancke,et al.  Automated protein-DNA interaction screening of Drosophila regulatory elements , 2011, Nature Methods.

[44]  Jim Thurmond,et al.  FlyBase 101 – the basics of navigating FlyBase , 2011, Nucleic Acids Res..

[45]  Sarah A. Teichmann,et al.  FlyTF: improved annotation and enhanced functionality of the Drosophila transcription factor database , 2009, Nucleic Acids Res..

[46]  C. Cummings,et al.  The daughterless gene product in Drosophila is a nuclear protein that is broadly expressed throughout the organism during development , 1993, Mechanisms of Development.

[47]  Yutaka Satou,et al.  Gene expression profiles of transcription factors and signaling molecules in the ascidian embryo: towards a comprehensive understanding of gene networks , 2004, Development.

[48]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[49]  C. Niehrs,et al.  Synexpression groups in eukaryotes , 1999, Nature.

[50]  M. Ashburner,et al.  Systematic determination of patterns of gene expression during Drosophila embryogenesis , 2002, Genome Biology.

[51]  Robert D. Finn,et al.  HMMER web server: interactive sequence similarity searching , 2011, Nucleic Acids Res..

[52]  E. Lewis A gene complex controlling segmentation in Drosophila , 1978, Nature.

[53]  L. Aravind,et al.  BEN: a novel domain in chromatin factors and DNA viral proteins , 2008, Bioinform..

[54]  Sarah A. Teichmann,et al.  DBD: a transcription factor prediction database , 2005, Nucleic Acids Res..

[55]  Raymond K. Auerbach,et al.  modENCODE Project Genome by the Caenorhabditis elegans Integrative Analysis of the , 2011 .

[56]  C. Nüsslein-Volhard,et al.  Mutations affecting segment number and polarity in Drosophila , 1980, Nature.