A hybrid algorithm to solve the single-machine scheduling problem

This paper deals with the multi-objective single-machine scheduling problem in agro-food industry. To solve this problem, a new hybrid algorithm is proposed. This new algorithm named SHGA/SA is composed of two well-known metaheuristics: genetic algorithms and simulated annealing. The results show that our new approach can be used to solve the single-machine scheduling problem efficiently and in a short computational time. Also, the results show that the hybrid algorithm outperforms both the GA and SA.

[1]  Shih-Wei Lin,et al.  Sequencing single-machine tardiness problems with sequence dependent setup times using an iterated greedy heuristic , 2009, Expert Syst. Appl..

[2]  Massimo Paolucci,et al.  A new discrete particle swarm optimization approach for the single-machine total weighted tardiness scheduling problem with sequence-dependent setup times , 2009, Eur. J. Oper. Res..

[3]  Ahmet B. Keha,et al.  Using genetic algorithms for single-machine bicriteria scheduling problems , 2003, Eur. J. Oper. Res..

[4]  Fatos Xhafa,et al.  A GA(TS) Hybrid Algorithm for Scheduling in Computational Grids , 2009, HAIS.

[5]  David E. Goldberg,et al.  Parallel Recombinative Simulated Annealing: A Genetic Algorithm , 1995, Parallel Comput..

[6]  Cheng Wu,et al.  A simulated annealing algorithm for single machine scheduling problems with family setups , 2009, Comput. Oper. Res..

[7]  Mohamed Benrejeb,et al.  New parallel genetic algorithms for the single-machine scheduling problems in agro-food industry , 2011, 2011 International Conference on Communications, Computing and Control Applications (CCCA).

[8]  Takeshi Yamada,et al.  Conventional Genetic Algorithm for Job Shop Problems , 1991, ICGA.

[9]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[10]  M.-C. Portmann,et al.  Les algorithmes génétiques et leur application aux problèmes d'ordonnancement , 1995 .

[11]  T. Neumann Computers And Intractability A Guide To The Theory Of Np Completeness , 2016 .

[12]  Y. S. Wong,et al.  Development of Heterogeneous Parallel Genetic Simulated Annealing Using Multi-Niche Crowding , 2007 .

[13]  Lothar Thiele,et al.  A Comparison of Selection Schemes used in Genetic Algorithms , 1995 .

[14]  A. J. Clewett,et al.  Introduction to sequencing and scheduling , 1974 .

[15]  F. Fred Choobineh,et al.  A multi-objective tabu search for a single-machine scheduling problem with sequence-dependent setup times , 2006, Eur. J. Oper. Res..

[16]  Jacques Carlier,et al.  Scheduling jobs with release dates and tails on identical machines to minimize the makespan , 1987 .

[17]  Tomoyuki Hiroyasu,et al.  Parallel Simulated Annealing using Genetic Crossover , 2000 .

[18]  Kazuhiko Kawamura,et al.  Exploring Problem-Specific Recombination Operators for Job Shop Scheduling , 1991, ICGA.

[19]  Hideo Tanaka,et al.  Genetic algorithms for flowshop scheduling problems , 1996 .

[20]  cem. baydar A Hybrid Parallel Simulated Annealing Algorithm to Optimize Store Performance , 2002 .

[21]  Christos D. Tarantilis,et al.  Minimizing makespan in permutation flow shop scheduling problems using a hybrid metaheuristic algorithm , 2009, Comput. Oper. Res..

[22]  Ching-Jong Liao,et al.  An ant colony optimization for single-machine tardiness scheduling with sequence-dependent setups , 2007, Comput. Oper. Res..

[23]  Hao Chen,et al.  Parallel Simulated Annealing and Genetic Algorithms: a Space of Hybrid Methods , 1994, PPSN.