Beyond the frontiers of neuronal types

Cortical neurons and, particularly, inhibitory interneurons display a large diversity of morphological, synaptic, electrophysiological, and molecular properties, as well as diverse embryonic origins. Various authors have proposed alternative classification schemes that rely on the concomitant observation of several multimodal features. However, a broad variability is generally observed even among cells that are grouped into a same class. Furthermore, the attribution of specific neurons to a single defined class is often difficult, because individual properties vary in a highly graded fashion, suggestive of continua of features between types. Going beyond the description of representative traits of distinct classes, we focus here on the analysis of atypical cells. We introduce a novel paradigm for neuronal type classification, assuming explicitly the existence of a structured continuum of diversity. Our approach, grounded on the theory of fuzzy sets, identifies a small optimal number of model archetypes. At the same time, it quantifies the degree of similarity between these archetypes and each considered neuron. This allows highlighting archetypal cells, which bear a clear similarity to a single model archetype, and edge cells, which manifest a convergence of traits from multiple archetypes.

[1]  G. Edelman Neural Darwinism: The Theory Of Neuronal Group Selection , 1989 .

[2]  K. Rockland,et al.  Association of Type I Neurons Positive for NADPH-Diaphorase with Blood Vessels in the Adult Monkey Corpus Callosum , 2012, Front. Neural Circuits.

[3]  Elmer S. West From the U. S. A. , 1965 .

[4]  A. Zaitsev,et al.  Interneuron diversity in layers 2-3 of monkey prefrontal cortex. , 2009, Cerebral cortex.

[5]  Norimitsu Suzuki,et al.  Distinctive classes of GABAergic interneurons provide layer-specific phasic inhibition in the anterior piriform cortex. , 2010, Cerebral cortex.

[6]  F. Karube,et al.  Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons. , 2011, Cerebral cortex.

[7]  J. Taylor An Introduction to Error Analysis , 1982 .

[8]  J. Rossier,et al.  Cortical Sources of Crf, Nkb, and Cck and Their Effects on Pyramidal Cells in the Neocortex , 2022 .

[9]  J. Rossier,et al.  Classification of fusiform neocortical interneurons based on unsupervised clustering. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Serge Charpak,et al.  Two populations of layer v pyramidal cells of the mouse neocortex: development and sensitivity to anesthetics. , 2005, Journal of neurophysiology.

[11]  E. Marder,et al.  Similar network activity from disparate circuit parameters , 2004, Nature Neuroscience.

[12]  Ken Sugino,et al.  Transcriptional and Electrophysiological Maturation of Neocortical Fast-Spiking GABAergic Interneurons , 2009, The Journal of Neuroscience.

[13]  R. Yuste,et al.  Neural Circuits Original Research Article Materials and Methods Preparation of Brain Slices , 2022 .

[14]  O. Marín,et al.  The Embryonic Preoptic Area Is a Novel Source of Cortical GABAergic Interneurons , 2009, The Journal of Neuroscience.

[15]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[16]  L. Gentet Functional diversity of supragranular GABAergic neurons in the barrel cortex , 2012, Front. Neural Circuits.

[17]  J. Rossier,et al.  Characterization of Type I and Type II nNOS-Expressing Interneurons in the Barrel Cortex of Mouse , 2012, Front. Neural Circuits.

[18]  B. Cauli,et al.  Pyramidal Neurons Are “Neurogenic Hubs” in the Neurovascular Coupling Response to Whisker Stimulation , 2011, The Journal of Neuroscience.

[19]  Csaba Varga,et al.  Regulation of cortical microcircuits by unitary GABAergic volume transmission , 2009, Nature.

[20]  B. Zemelman,et al.  The columnar and laminar organization of inhibitory connections to neocortical excitatory cells , 2010, Nature Neuroscience.

[21]  G Tononi,et al.  Measures of degeneracy and redundancy in biological networks. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[22]  R. Yuste,et al.  The Enigmatic Function of Chandelier Cells , 2010, Front. Neurosci..

[23]  Demian Battaglia,et al.  Classification of NPY-Expressing Neocortical Interneurons , 2009, The Journal of Neuroscience.

[24]  Ulrich Dirnagl,et al.  Pharmacological Uncoupling of Activation Induced Increases in CBF and CMRO2 , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[25]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[26]  R. Yuste,et al.  Correlation between axonal morphologies and synaptic input kinetics of interneurons from mouse visual cortex. , 2007, Cerebral cortex.

[27]  C F Tyner,et al.  The naming of neurons: applications of taxonomic theory to the study of cellular populations. , 1975, Brain, behavior and evolution.

[28]  D. Lewis,et al.  Cluster analysis-based physiological classification and morphological properties of inhibitory neurons in layers 2-3 of monkey dorsolateral prefrontal cortex. , 2005, Journal of neurophysiology.

[29]  B. Cauli,et al.  Revisiting the Role of Neurons in Neurovascular Coupling , 2010, Front. Neuroenerg..

[30]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[31]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[32]  C. Iadecola Neurovascular regulation in the normal brain and in Alzheimer's disease , 2004, Nature Reviews Neuroscience.

[33]  J. Bezdek Numerical taxonomy with fuzzy sets , 1974 .

[34]  J. Hyvärinen,et al.  Cortical neuronal mechanisms in flutter-vibration studied in unanesthetized monkeys. Neuronal periodicity and frequency discrimination. , 1969, Journal of neurophysiology.

[35]  L. Roux,et al.  Glutamatergic nonpyramidal neurons from neocortical layer VI and their comparison with pyramidal and spiny stellate neurons. , 2009, Journal of neurophysiology.

[36]  G. Fishell,et al.  The Temporal and Spatial Origins of Cortical Interneurons Predict Their Physiological Subtype , 2005, Neuron.

[37]  P. Somogyi,et al.  Fast IPSPs elicited via multiple synaptic release sites by different types of GABAergic neurone in the cat visual cortex. , 1997, The Journal of physiology.

[38]  James M. Keller,et al.  Applications of Fuzzy Logic in Bioinformatics , 2008, Series on Advances in Bioinformatics and Computational Biology.

[39]  Gord Fishell,et al.  The Developmental Integration of Cortical Interneurons into a Functional Network , 2022 .

[40]  P. Somogyi,et al.  Calcium-Permeable AMPA Receptors Provide a Common Mechanism for LTP in Glutamatergic Synapses of Distinct Hippocampal Interneuron Types , 2012, The Journal of Neuroscience.

[41]  Hong Wang,et al.  Synaptic and vascular associations of neurons containing cyclooxygenase-2 and nitric oxide synthase in rat somatosensory cortex. , 2005, Cerebral cortex.

[42]  J. Schmee Applied Statistics—A Handbook of Techniques , 1984 .

[43]  Y. Kubota,et al.  Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. , 1993, Journal of neurophysiology.

[44]  Y. Kubota,et al.  Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  M. Ross,et al.  Cyclooxygenase-2 Contributes to Functional Hyperemia in Whisker-Barrel Cortex , 2000, The Journal of Neuroscience.

[46]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[47]  R. Cossart The maturation of cortical interneuron diversity: how multiple developmental journeys shape the emergence of proper network function , 2011, Current Opinion in Neurobiology.

[48]  G. Miyoshi,et al.  Common Origins of Hippocampal Ivy and Nitric Oxide Synthase Expressing Neurogliaform Cells , 2010, The Journal of Neuroscience.

[49]  P. Somogyi,et al.  Defined types of cortical interneurone structure space and spike timing in the hippocampus , 2005, The Journal of physiology.

[50]  Thomas K. Berger,et al.  A synaptic organizing principle for cortical neuronal groups , 2011, Proceedings of the National Academy of Sciences.

[51]  S. Anderson,et al.  The origin and specification of cortical interneurons , 2006, Nature Reviews Neuroscience.

[52]  G. Tamás,et al.  Identified Sources and Targets of Slow Inhibition in the Neocortex , 2003, Science.

[53]  Stefano Marsili-Libelli,et al.  Fuzzy Clustering of Ecological Data , 1991 .

[54]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[55]  R. Miles,et al.  How Many Subtypes of Inhibitory Cells in the Hippocampus? , 1998, Neuron.

[56]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[57]  Arindam Banerjee,et al.  Semi-supervised Clustering by Seeding , 2002, ICML.

[58]  D. Lewis,et al.  Parvalbumin-positive basket interneurons in monkey and rat prefrontal cortex. , 2008, Journal of neurophysiology.

[59]  B. Connors,et al.  Intrinsic firing patterns of diverse neocortical neurons , 1990, Trends in Neurosciences.

[60]  R. Adams,et al.  Axon guidance molecules in vascular patterning. , 2010, Cold Spring Harbor perspectives in biology.

[61]  Lotfi A. Zadeh,et al.  Is there a need for fuzzy logic? , 2008, NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society.

[62]  H. Markram,et al.  Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. , 2004, Cerebral cortex.

[63]  M. C. Angulo,et al.  Molecular and Physiological Diversity of Cortical Nonpyramidal Cells , 1997, The Journal of Neuroscience.

[64]  J. Rossier,et al.  Serotonin 3A Receptor Subtype as an Early and Protracted Marker of Cortical Interneuron Subpopulations , 2010, Cerebral cortex.

[65]  J DeFelipe,et al.  Nitric oxide-producing neurons in the neocortex: morphological and functional relationship with intraparenchymal microvasculature. , 1998, Cerebral cortex.

[66]  G. Fishell,et al.  The Largest Group of Superficial Neocortical GABAergic Interneurons Expresses Ionotropic Serotonin Receptors , 2010, The Journal of Neuroscience.

[67]  Jean Rossier,et al.  Diversity of GABAergic interneurons in layer VIa and VIb of mouse barrel cortex. , 2013, Cerebral cortex.

[68]  Ivan Soltesz,et al.  Different transmitter transients underlie presynaptic cell type specificity of GABAA,slow and GABAA,fast , 2007, Proceedings of the National Academy of Sciences.

[69]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[70]  Eve Marder,et al.  Functional consequences of animal-to-animal variation in circuit parameters , 2009, Nature Neuroscience.

[71]  A. Salski,et al.  Fuzzy clustering of fuzzy ecological data , 2007, Ecol. Informatics.

[72]  G. Miyoshi,et al.  Physiologically Distinct Temporal Cohorts of Cortical Interneurons Arise from Telencephalic Olig2-Expressing Precursors , 2007, The Journal of Neuroscience.

[73]  Karl Zilles,et al.  Functional diversity of layer IV spiny neurons in rat somatosensory cortex: quantitative morphology of electrophysiologically characterized and biocytin labeled cells. , 2004, Cerebral cortex.

[74]  N. Kessaris,et al.  Multiple embryonic origins of nitric oxide synthase-expressing GABAergic neurons of the neocortex , 2012, Front. Neural Circuits.

[75]  Miguel Equihua,et al.  Fuzzy clustering of ecological data. , 1990 .

[76]  E. Marder,et al.  Variability, compensation and homeostasis in neuron and network function , 2006, Nature Reviews Neuroscience.

[77]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[78]  A. Hodgkin The local electric changes associated with repetitive action in a non‐medullated axon , 1948, The Journal of physiology.

[79]  D. Attwell,et al.  Glial and neuronal control of brain blood flow , 2022 .

[80]  G. Fishell,et al.  The origin of neocortical nitric oxide synthase-expressing inhibitory neurons , 2012, Front. Neural Circuits.

[81]  D. Prince,et al.  Burst generating and regular spiking layer 5 pyramidal neurons of rat neocortex have different morphological features , 1990, The Journal of comparative neurology.

[82]  Y. Kubota,et al.  Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex , 1994, Brain Research.

[83]  J. Rossier,et al.  Cortical GABA Interneurons in Neurovascular Coupling: Relays for Subcortical Vasoactive Pathways , 2004, The Journal of Neuroscience.

[84]  Boldeanu Silviu,et al.  FUZZY CLUSTERING , 2006 .

[85]  John R Huguenard,et al.  Electrophysiological classification of somatostatin-positive interneurons in mouse sensorimotor cortex. , 2006, Journal of neurophysiology.

[86]  J. Rossier,et al.  Activation of cortical 5-HT3 receptor-expressing interneurons induces NO mediated vasodilatations and NPY mediated vasoconstrictions , 2012, Front. Neural Circuits.

[87]  Moritz Helmstaedter,et al.  The relation between dendritic geometry, electrical excitability, and axonal projections of L2/3 interneurons in rat barrel cortex. , 2009, Cerebral cortex.

[88]  A. Agmon,et al.  Distinct Subtypes of Somatostatin-Containing Neocortical Interneurons Revealed in Transgenic Mice , 2006, The Journal of Neuroscience.

[89]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[90]  A. Burkhalter Many Specialists for Suppressing Cortical Excitation , 2008, Front. Neurosci..