Design of nonlinear controller for bi-axial inverted pendulum system

This study presents the use of Tustin's friction model and a disturbance observer to improve the steady-state error of a bi-axial inverted pendulum system. Then, a three-phase controller, including a swing-up control, a sliding-mode with feedback linearisation to control the angle of the pendulum, and a sliding-mode plus PID control for the pendulum-cart system is employed to eliminate the system's nonlinear and unstable characteristics. Experimental results reveal that the pendulum maximum angle of operation is plusmn 14deg(X-axis)/ plusmn12deg (Y-axis); the steady-state error of the pendulum angle is plusmn0.2deg (X-axis)/plusmn 0.3deg(Y-axis), and the cart position is within +4 mm. Experimental results are illustrated and Alms are provided at the website http://midistudio. myweb.hinet.net to show the effectiveness and robustness of the proposed control schema.

[1]  Kazuhiro Kosuge,et al.  Digital control of a double inverted pendulum on an inclined rail , 1980 .

[2]  S. Mourad,et al.  Balancing of an inverted pendulum with a SCARA robot , 1998 .

[3]  Chin E. Lin,et al.  A hybrid control approach for pendulum-car control , 1991, Proceedings IECON '91: 1991 International Conference on Industrial Electronics, Control and Instrumentation.

[4]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[5]  E. P. Cunningham,et al.  Digital Filtering: An Introduction , 1992 .

[6]  Carlos Canudas de Wit,et al.  A survey of models, analysis tools and compensation methods for the control of machines with friction , 1994, Autom..

[7]  G.-W. van der Linden,et al.  H/sub ∞/ control of an experimental inverted pendulum with dry friction , 1993, IEEE Control Systems.

[8]  A. Tustin,et al.  The effects of backlash and of speed-dependent friction on the stability of closed-cycle control systems , 1947 .

[9]  Seul Jung,et al.  Balancing and position tracking control of an inverted pendulum on a x-y plane using decentralized neural networks , 2003, Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003).

[10]  A. Avello,et al.  Swing-up control problem for a self-erecting double inverted pendulum , 2002 .

[11]  J. W. Arthur,et al.  Microelectronics: Digital and Analog Circuits and Systems , 1979 .

[12]  Shiuh-Jer Huang,et al.  Control of an inverted pendulum using grey prediction model , 1994, Proceedings of 1994 IEEE Industry Applications Society Annual Meeting.

[13]  Yoichi Hori,et al.  Robust speed control of DC servomotors using modern two degrees-of-freedom controller design , 1991 .

[14]  R. Lozano,et al.  Stabilization of the inverted pendulum around its homoclinic orbit , 2000 .

[15]  Gustavo A. Medrano-Cerda,et al.  Discrete-time H∞ control of a triple inverted pendulum with single control input , 1999 .

[16]  Masayoshi Tomizuka,et al.  Robust motion controller design for high-accuracy positioning systems , 1996, IEEE Trans. Ind. Electron..

[17]  Alfred C. Rufer,et al.  JOE: a mobile, inverted pendulum , 2002, IEEE Trans. Ind. Electron..

[18]  G.-W. van der Linden,et al.  H/sub infinity / control of an experimental inverted pendulum with dry friction , 1992, [Proceedings 1992] The First IEEE Conference on Control Applications.

[19]  Wen-Liang Chen,et al.  Robust adaptive sliding-mode control using fuzzy modeling for an inverted-pendulum system , 1998, IEEE Trans. Ind. Electron..

[20]  Rong-Jong Wai,et al.  Adaptive stabilizing and tracking control for a nonlinear inverted-pendulum system via sliding-mode technique , 2006, IEEE Trans. Ind. Electron..