Characterization of bifunctional l-glutathione synthetases from Actinobacillus pleuropneumoniae and Actinobacillus succinogenes for efficient glutathione biosynthesis

[1]  A. Kondo,et al.  Improvement of oxidized glutathione fermentation by thiol redox metabolism engineering in Saccharomyces cerevisiae , 2015, Applied Microbiology and Biotechnology.

[2]  Zhimin Li,et al.  Glutathione production by recombinant Escherichia coli expressing bifunctional glutathione synthetase , 2015, Journal of Industrial Microbiology & Biotechnology.

[3]  S. Savvides,et al.  Glutathione biosynthesis in bacteria by bifunctional GshF is driven by a modular structure featuring a novel hybrid ATP-grasp fold. , 2012, Journal of molecular biology.

[4]  Zhimin Li,et al.  Production of glutathione using a bifunctional enzyme encoded by gshF from Streptococcus thermophilus expressed in Escherichia coli. , 2011, Journal of biotechnology.

[5]  A. Kondo,et al.  Enzymatic glutathione production using metabolically engineered Saccharomyces cerevisiae as a whole-cell biocatalyst , 2011, Applied Microbiology and Biotechnology.

[6]  Zhimin Li,et al.  Enhanced production of human epidermal growth factor under control of the phoA promoter by acetate-tolerant Escherichia coli DB15 in a chemically defined medium , 2010 .

[7]  G. Du,et al.  Optimization of sodium dedecyl sulfate (SDS) addition coupled with adenosine triphosphate (ATP) regeneration for glutathione overproduction in high density cultivation of Candida utilis. , 2010, Enzyme and microbial technology.

[8]  Hirotada Mori,et al.  Glutathione production by efficient ATP-regenerating Escherichia coli mutants. , 2009, FEMS microbiology letters.

[9]  O. Griffith,et al.  Crystallization and preliminary crystallographic analysis of bifunctional gamma-glutamylcysteine synthetase-glutatione synthetase from Streptococcus agalactiae. , 2009, Acta crystallographica. Section F, Structural biology and crystallization communications.

[10]  Shaoxin Chen,et al.  Improved glutathione production by gene expression in Pichia pastoris , 2009, Bioprocess and biosystems engineering.

[11]  G. Du,et al.  Enhancement of glutathione production by altering adenosine metabolism of Escherichia coli in a coupled ATP regeneration system with Saccharomyces cerevisiae , 2008, Journal of applied microbiology.

[12]  K. Kino,et al.  Novel substrate specificity of glutathione synthesis enzymes from Streptococcus agalactiae and Clostridium acetobutylicum. , 2007, Biochemical and biophysical research communications.

[13]  B. Volkman,et al.  Gamma-glutamylcysteine synthetase-glutathione synthetase: domain structure and identification of residues important in substrate and glutathione binding. , 2006, Biochemistry.

[14]  G. Du,et al.  Improved glutathione production by gene expression in Escherichia coli , 2006, Letters in applied microbiology.

[15]  G. Georgiou,et al.  The many faces of glutathione in bacteria. , 2006, Antioxidants & redox signaling.

[16]  J. V. Van Beeumen,et al.  Characterization of the Bifunctional γ-Glutamate-cysteine Ligase/Glutathione Synthetase (GshF) of Pasteurella multocida* , 2006, Journal of Biological Chemistry.

[17]  W. Goebel,et al.  A Multidomain Fusion Protein in Listeria monocytogenes Catalyzes the Two Primary Activities for Glutathione Biosynthesis , 2005, Journal of bacteriology.

[18]  O. Griffith,et al.  Glutathione Synthesis in Streptococcus agalactiae , 2005, Journal of Biological Chemistry.

[19]  O. Griffith,et al.  Glutathione Synthesis in Streptococcus agalactiae ONE PROTEIN ACCOUNTS FOR -GLUTAMYLCYSTEINE SYNTHETASE AND GLUTATHIONE SYNTHETASE ACTIVITIES* , 2005 .

[20]  Jian Chen,et al.  Glutathione: a review on biotechnological production , 2004, Applied Microbiology and Biotechnology.

[21]  Gert Vriend,et al.  Increasing the precision of comparative models with YASARA NOVA—a self‐parameterizing force field , 2002, Proteins.

[22]  O. Griffith,et al.  Escherichia coli gamma-glutamylcysteine synthetase. Two active site metal ions affect substrate and inhibitor binding. , 2002, The Journal of biological chemistry.

[23]  O. Carmel-Harel,et al.  Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and saccharomyces cerevisiae responses to oxidative stress. , 2000, Annual review of microbiology.

[24]  O. Griffith,et al.  Biologic and pharmacologic regulation of mammalian glutathione synthesis. , 1999, Free radical biology & medicine.

[25]  A. Maruyama,et al.  Construction of a plasmid carrying both CTP synthetase and a fused gene formed from cholinephosphate cytidylyltransferase and choline kinase genes and its application to industrial CDP-choline production: enzymatic production of CDP-choline from orotic acid (Part II). , 1997, Bioscience, biotechnology, and biochemistry.

[26]  T. Nishi,et al.  High level expression of XMP aminase in Escherichia coli and its application for the industrial production of 5'-guanylic acid. , 1997, Bioscience, biotechnology, and biochemistry.

[27]  C. Walsh,et al.  Active site mapping of Escherichia coli D-Ala-D-Ala ligase by structure-based mutagenesis. , 1995, Biochemistry.

[28]  M. Gennaro,et al.  Separation of reduced and oxidized glutathione in a pharmaceutical preparation by ion-interaction reversed-phase HPLC. , 1992, Journal of pharmaceutical and biomedical analysis.

[29]  H. Kumagai,et al.  gamma-Glutamyltranspeptidase from Escherichia coli K-12: formation and localization , 1986, Journal of bacteriology.

[30]  G. Newton,et al.  Entamoeba histolytica: a eukaryote without glutathione metabolism. , 1984, Science.

[31]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[32]  F. G. Carmona,et al.  Enzymatic assays: optimization of systems by using pyruvate kinase and lactate dehydrogenase as auxiliary enzymes. , 1982, Revista espanola de fisiologia.

[33]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[34]  A. Meister,et al.  Regulation of gamma-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. , 1975, The Journal of biological chemistry.