The Classical Receptive Field Surround of Primate Parasol Ganglion Cells Is Mediated Primarily by a Non-GABAergic Pathway

Although the center-surround receptive field is a fundamental property of retinal ganglion cells, the circuitry that mediates surround inhibition remains controversial. We examined the contribution of horizontal cells and amacrine cells to the surround of parasol ganglion cells of macaque and baboon retina by measuring receptive field structure before and during the application of drugs that have been shown previously to affect surrounds in a range of mammalian and nonmammalian species. Carbenoxolone and cobalt, thought to attenuate feedback from horizontal cells to cones, severely reduced the surround. Tetrodotoxin, which blocks sodium spiking in amacrine cells, and picrotoxin, which blocks the inhibitory action of GABA, only slightly reduced the surround. These data are consistent with the hypothesis that the surrounds of light-adapted parasol ganglion cells are generated primarily by non-GABAergic horizontal cell feedback in the outer retina, with a small contribution from GABAergic amacrine cells of the inner retina.

[1]  J. L. Schnapf,et al.  Surround Antagonism in Macaque Cone Photoreceptors , 2003, Journal of Neuroscience.

[2]  D. Dacey,et al.  Colour coding in the primate retina: diverse cell types and cone-specific circuitry , 2003, Current Opinion in Neurobiology.

[3]  F. Werblin,et al.  Rapid global shifts in natural scenes block spiking in specific ganglion cell types , 2003, Nature Neuroscience.

[4]  Peter D Lukasiewicz,et al.  Spike-dependent GABA inputs to bipolar cell axon terminals contribute to lateral inhibition of retinal ganglion cells. , 2003, Journal of neurophysiology.

[5]  D. Dacey,et al.  Carbenoxolone Blocks Horizontal Cell Feedback and Eliminates the Ganglion Cell Surround in Macaque Monkey Retina , 2002 .

[6]  D. Attwell,et al.  Control of intracellular chloride concentration and GABA response polarity in rat retinal ON bipolar cells , 2002, The Journal of physiology.

[7]  Béla Völgyi,et al.  Feedback inhibition in the inner plexiform layer underlies the surround‐mediated responses of AII amacrine cells in the mammalian retina , 2002, The Journal of physiology.

[8]  C. Enroth-Cugell,et al.  Effects of Remote Stimulation on the Mean Firing Rate of Cat Retinal Ganglion Cells , 2001, The Journal of Neuroscience.

[9]  H. Wässle,et al.  Synaptic Currents Generating the Inhibitory Surround of Ganglion Cells in the Mammalian Retina , 2001, The Journal of Neuroscience.

[10]  M Kamermans,et al.  Hemichannel-Mediated Inhibition in the Outer Retina , 2001, Science.

[11]  S. Bloomfield,et al.  Rod Vision: Pathways and Processing in the Mammalian Retina , 2001, Progress in Retinal and Eye Research.

[12]  Joel Pokorny,et al.  Characterization and use of a digital light projector for vision research , 2001, Vision Research.

[13]  P. Sterling,et al.  Evidence That Different Cation Chloride Cotransporters in Retinal Neurons Allow Opposite Responses to GABA , 2000, The Journal of Neuroscience.

[14]  P. Lennie,et al.  Color vision: Putting it together , 2000, Current Biology.

[15]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[16]  Barry B. Lee,et al.  Center surround receptive field structure of cone bipolar cells in primate retina , 2000, Vision Research.

[17]  S. M. Wu,et al.  I4AA-Sensitive chloride current contributes to the center light responses of bipolar cells in the tiger salamander retina. , 2000, Journal of neurophysiology.

[18]  F S Werblin,et al.  Three Levels of Lateral Inhibition: A Space–Time Study of the Retina of the Tiger Salamander , 2000, The Journal of Neuroscience.

[19]  J. Verweij,et al.  Physiology of L- and M-cone inputs to H1 horizontal cells in the primate retina. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  P. Lukasiewicz,et al.  GABAC Receptors Control Adaptive Changes in a Glycinergic Inhibitory Pathway in Salamander Retina , 2000, The Journal of Neuroscience.

[21]  J. B. Demb,et al.  Functional Circuitry of the Retinal Ganglion Cell's Nonlinear Receptive Field , 1999, The Journal of Neuroscience.

[22]  L. Diller,et al.  Spatial properties of the cat X-cell receptive field as a function of mean light level , 1999, Visual Neuroscience.

[23]  H Spekreijse,et al.  The feedback pathway from horizontal cells to cones A mini review with a look ahead , 1999, Vision Research.

[24]  W R Taylor,et al.  TTX attenuates surround inhibition in rabbit retinal ganglion cells , 1999, Visual Neuroscience.

[25]  P. Witkovsky,et al.  Sub-millimolar cobalt selectively inhibits the receptive field surround of retinal neurons , 1999, Visual Neuroscience.

[26]  P. Cook,et al.  Lateral inhibition in the inner retina is important for spatial tuning of ganglion cells , 1998, Nature Neuroscience.

[27]  J. Dodge,et al.  Structure/activity relationships , 1998 .

[28]  P. Lukasiewicz,et al.  A diversity of GABA receptors in the retina. , 1998, Seminars in cell & developmental biology.

[29]  Peter Sterling,et al.  Neurochemistry of the mammalian cone `synaptic complex' , 1998, Vision Research.

[30]  Joel Pokorny,et al.  Rod inputs to macaque ganglion cells , 1997, Vision Research.

[31]  D. Marshak,et al.  Synaptic Inputs to ON Parasol Ganglion Cells in the Primate Retina , 1996, The Journal of Neuroscience.

[32]  R. Marc,et al.  Amino Acid Signatures in the Primate Retina , 1996, The Journal of Neuroscience.

[33]  H. Wässle,et al.  Immunocytochemical Localization of the GABACReceptor ρ Subunits in the Mammalian Retina , 1996, The Journal of Neuroscience.

[34]  S. Bloomfield Effect of spike blockade on the receptive-field size of amacrine and ganglion cells in the rabbit retina. , 1996, Journal of neurophysiology.

[35]  S. Archer,et al.  Neurobiology and Clinical Aspects of the Outer Retina , 1995, Springer Netherlands.

[36]  Barry B. Lee,et al.  The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.

[37]  P Sterling,et al.  Horizontal cells in cat and monkey retina express different isoforms of glutamic acid decarboxylase , 1994, Visual Neuroscience.

[38]  D. Dacey,et al.  A coupled network for parasol but not midget ganglion cells in the primate retina , 1992, Visual Neuroscience.

[39]  S. Wu,et al.  Feedback connections and operation of the outer plexiform layer of the retina , 1992, Current Opinion in Neurobiology.

[40]  H. Kolb,et al.  Midget ganglion cells of the parafovea of the human retina: A Study by electron microscopy and serial section reconstructions , 1991, The Journal of comparative neurology.

[41]  D. A. Burkhardt,et al.  Effects of synaptic blocking agents on the depolarizing responses of turtle cones evoked by surround illumination , 1990, Visual Neuroscience.

[42]  H. Wässle,et al.  GABA‐like immunoreactivity in the macaque monkey retina: A light and electron microscopic study , 1990, The Journal of comparative neurology.

[43]  H. Karten,et al.  Immunohistochemical localization of GABAA receptors in the retina of the new world primate Saimiri sciureus , 1989, Visual Neuroscience.

[44]  J. Davidson,et al.  Glycyrrhetinic acid derivatives: a novel class of inhibitors of gap-junctional intercellular communication. Structure-activity relationships. , 1988, The Journal of pharmacology and experimental therapeutics.

[45]  H. Wässle,et al.  Action and localization of gamma‐aminobutyric acid in the cat retina. , 1985, The Journal of physiology.

[46]  R. W. Rodieck,et al.  Parasol and midget ganglion cells of the human retina , 1985, The Journal of comparative neurology.

[47]  C. Enroth-Cugell,et al.  Functional characteristics and diversity of cat retinal ganglion cells. Basic characteristics and quantitative description. , 1984, Investigative ophthalmology & visual science.

[48]  C. Enroth-Cugell,et al.  Spatio‐temporal interactions in cat retinal ganglion cells showing linear spatial summation. , 1983, The Journal of physiology.

[49]  R. Linsenmeier,et al.  Effects of picrotoxin and strychnine on non‐linear responses of Y‐type cat retinal ganglion cells. , 1982, The Journal of physiology.

[50]  M. Ariel,et al.  Effect of synaptic transmitter drugs on receptive fields of rabbit retinal ganglion cells , 1981, Vision Research.

[51]  D. Schweitzer-Tong,et al.  Gaba‐antagonists alter spatial summation in receptive field centres of rod‐ but not cone‐drive cat retinal ganglion Y‐cells. , 1981, The Journal of physiology.

[52]  C. Enroth-Cugell,et al.  The involvement of gamma-aminobutyric acid in the organization of cat retinal ganglion cell receptive fields. A study with picrotoxin and bicuculline , 1976, The Journal of general physiology.

[53]  W D Wright,et al.  Color Science, Concepts and Methods. Quantitative Data and Formulas , 1967 .

[54]  R. W. Rodieck Quantitative analysis of cat retinal ganglion cell response to visual stimuli. , 1965, Vision research.

[55]  R. W. Rodieck,et al.  Parasol and midget ganglion cells of the primate retina , 2004 .

[56]  L. Croner,et al.  Receptive fields of P and M ganglion cells across the primate retina , 1995, Vision Research.

[57]  M. Piccolino Cross-talk between cones and horizontal cells through the feedback circuit , 1995 .

[58]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.