Evolution und Lernen zur Optimierung neuronaler Strukturen

Inhaltsverzeichnis Einleitung 1 1 Strukturanpassung durch Lernen 5

[1]  Terry Bossomaier,et al.  MONSTER - the Ghost in the Connection Machine: Modularity of Neural Systems in Theoretical Evolutionary Research , 1995, SC.

[2]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[3]  G. Deco,et al.  An Information-Theoretic Approach to Neural Computing , 1997, Perspectives in Neural Computing.

[4]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[5]  Lucie P. Aarts,et al.  Neural Network Method for Solving Partial Differential Equations , 2001, Neural Processing Letters.

[6]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[7]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[8]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  Sandiway Fong,et al.  Natural Language Grammatical Inference with Recurrent Neural Networks , 2000, IEEE Trans. Knowl. Data Eng..

[10]  H. Akaike A new look at the statistical model identification , 1974 .

[11]  Peter Ross,et al.  Adapting Operator Settings in Genetic Algorithms , 1998, Evolutionary Computation.

[12]  D. Fotiadis,et al.  Artificial neural network methods in quantum mechanics , 1997, quant-ph/9705029.

[13]  Christian Igel,et al.  Empirical evaluation of the improved Rprop learning algorithms , 2003, Neurocomputing.

[14]  Chi-Hang Lam,et al.  FORMATION AND DYNAMICS OF MODULES IN A DUAL-TASKING MULTILAYER FEED-FORWARD NEURAL NETWORK , 1998 .

[15]  Ronald J. Williams,et al.  A Learning Algorithm for Continually Running Fully Recurrent Neural Networks , 1989, Neural Computation.

[16]  R. Shillcock,et al.  Proceedings of the Twenty-Third Annual Conference of the Cognitive Science Society , 2001 .

[17]  Martin A. Riedmiller,et al.  Advanced supervised learning in multi-layer perceptrons — From backpropagation to adaptive learning algorithms , 1994 .

[18]  Claudio Moraga,et al.  An Evolutionary Method to Find Good Building-Blocks for Architectures of Artificial Neural Networks , 1996 .

[19]  Dimitrios I. Fotiadis,et al.  Artificial neural networks for solving ordinary and partial differential equations , 1997, IEEE Trans. Neural Networks.

[20]  Gilles Pagès,et al.  Approximations of Functions by a Multilayer Perceptron: a New Approach , 1997, Neural Networks.

[21]  Stefano Nolfi,et al.  Learning to Adapt to Changing Environments in Evolving Neural Networks , 1996, Adapt. Behav..

[22]  J. Fodor,et al.  The Modularity of Mind: An Essay on Faculty Psychology , 1984 .

[23]  Wolfram Schiffmann,et al.  Comparison of optimized backpropagation algorithms , 1993, ESANN.

[24]  Takahiro Sasaki,et al.  Evolving Learnable Neural Networks Under Changing Environments with Various Rates of Inheritance of Acquired Characters: Comparison of Darwinian and Lamarckian Evolution , 1999, Artificial Life.

[25]  Jim Smith,et al.  Operator and parameter adaptation in genetic algorithms , 1997, Soft Comput..

[26]  J. Fodor The Modularity of mind. An essay on faculty psychology , 1986 .

[27]  Michael Hüsken,et al.  Fast Adaptation of the Solution of Differential Equations to Changing Constraints , 2000 .

[28]  Kurt Hornik,et al.  Some new results on neural network approximation , 1993, Neural Networks.

[29]  Fofana ON THE STOCHASTIC STABILITY OF REGENERATIVE CHATTER MACHINING , 2000 .

[30]  Statistics and Time Series Analyses of BTA Deep Hole Drilling , 2001 .

[31]  Xin Yao,et al.  A new evolutionary system for evolving artificial neural networks , 1997, IEEE Trans. Neural Networks.

[32]  Robert Herman,et al.  Kinetic theory of vehicular traffic , 1971 .

[33]  Hava T. Siegelmann,et al.  On the complexity of training neural networks with continuous activation functions , 1995, IEEE Trans. Neural Networks.

[34]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[35]  Hiroaki Kitano,et al.  Designing Neural Networks Using Genetic Algorithms with Graph Generation System , 1990, Complex Syst..

[36]  M. Raijmakers Rethinking innateness: A connectionist perspective on development. , 1997 .

[37]  Geoffrey E. Hinton,et al.  How Learning Can Guide Evolution , 1996, Complex Syst..

[38]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[39]  C. Lee Giles,et al.  Extracting and Learning an Unknown Grammar with Recurrent Neural Networks , 1991, NIPS.

[40]  P. Kloeden,et al.  Numerical Solutions of Stochastic Differential Equations , 1995 .

[41]  Wilhelm Leutzbach,et al.  Introduction to the Theory of Traffic Flow , 1987 .

[42]  Heinrich Braun,et al.  Neuronale Netze - Optimierung durch Lernen und Evolution , 1997 .

[43]  D. Fogel Evolutionary algorithms in theory and practice , 1997, Complex..

[44]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[45]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[46]  Wolfram Schiffmann,et al.  Speeding Up Backpropagation Algorithms by Using Cross-Entropy Combined with Pattern Normalization , 1998, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[47]  Stefano Nolfi,et al.  Learning and Evolution , 1999, Auton. Robots.

[48]  C. Igel,et al.  Using fitness distributions to improve the evolution of learning structures , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[49]  J. van Leeuwen,et al.  Neural Networks: Tricks of the Trade , 2002, Lecture Notes in Computer Science.

[50]  Christian Goerick,et al.  Fast learning for problem classes using knowledge based network initialization , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[51]  Peter Stagge,et al.  Recurrent neural networks for time series classification , 2003, Neurocomputing.

[52]  Lorien Y. Pratt,et al.  A Survey of Transfer Between Connectionist Networks , 1996, Connect. Sci..

[53]  K. Weinert,et al.  Koordinierter Einsatz von Sensorik und Statistik , 2001 .

[54]  Marc Toussaint,et al.  Task-dependent evolution of modularity in neural networks , 2002 .

[55]  Bernhard Sendhoff,et al.  Evolution of structures: optimization of artificial neural structures for information processing , 1998 .

[56]  M. Husken,et al.  Optimization for problem classes-neural networks that learn to learn , 2000, 2000 IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks. Proceedings of the First IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks (Cat. No.00.

[57]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[58]  Bernhard Sendhoff,et al.  Optimisation of a Stator Blade Used in a Transonic Compressor Cascade with Evolution Strategies , 2000 .

[59]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[60]  Anne-Kathrin Lauer Literaturverzeichnis. , 1935, Die Nichtangriffsverpflichtung im deutschen und europäischen Kartellrecht.

[61]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[62]  Takahiro Sasaki,et al.  Adaptation toward Changing Environments: Why Darwinian in Nature? , 1997 .

[63]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[64]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[65]  Martin A. Riedmiller,et al.  A direct adaptive method for faster backpropagation learning: the RPROP algorithm , 1993, IEEE International Conference on Neural Networks.

[66]  Christian Igel,et al.  Operator adaptation in evolutionary computation and its application to structure optimization of neural networks , 2003, Neurocomputing.

[67]  Kerner,et al.  Cluster effect in initially homogeneous traffic flow. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[68]  Rich Caruana,et al.  Multitask Learning , 1997, Machine-mediated learning.

[69]  J. Stephen Judd,et al.  Neural network design and the complexity of learning , 1990, Neural network modeling and connectionism.

[70]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.

[71]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[72]  Chris Bishop,et al.  Exact Calculation of the Hessian Matrix for the Multilayer Perceptron , 1992, Neural Computation.

[73]  James L. McClelland,et al.  Finite State Automata and Simple Recurrent Networks , 1989, Neural Computation.

[74]  Les E. Atlas,et al.  Recurrent neural networks and robust time series prediction , 1994, IEEE Trans. Neural Networks.

[75]  Lutz Prechelt,et al.  PROBEN 1 - a set of benchmarks and benchmarking rules for neural network training algorithms , 1994 .

[76]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[77]  T. Bossomaier,et al.  MONSTER — The Ghost in the Connection Machine: Modularity of Neural Systems in Theoretical Evolutionary Research , 1995, Proceedings of the IEEE/ACM SC95 Conference.

[78]  Frédéric Gruau,et al.  Automatic Definition of Modular Neural Networks , 1994, Adapt. Behav..

[79]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[80]  Domenico Parisi,et al.  Evolving Modular Architectures for Neural Networks , 2000, NCPW.

[81]  Julian F. Miller,et al.  GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, New York, USA, 9-13 July 2002 , 2002, GECCO.

[82]  F. Takens Detecting strange attractors in turbulence , 1981 .

[83]  John A. Bullinaria,et al.  Simulating the Evolution of Modular Neural Systems , 2001 .

[84]  Peter M. Todd,et al.  Designing Neural Networks using Genetic Algorithms , 1989, ICGA.

[85]  Bernhard Sendhoff,et al.  An Extended Elman Net for Modeling Time Series , 1997, ICANN.

[86]  Kerner,et al.  Structure and parameters of clusters in traffic flow. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[87]  Jörn Mehnen,et al.  Analysis and Prediction of Dynamic Disturbances of the BTA Deep Hole Drilling Process , 2002 .

[88]  Christian Igel,et al.  Balancing Learning And Evolution , 2002, GECCO.

[89]  Jih-Hua Chin,et al.  Dynamic Modelling And Analysis Of Deep-Hole Drilling Process , 1996 .

[90]  Anders Krogh,et al.  A Simple Weight Decay Can Improve Generalization , 1991, NIPS.

[91]  Guo-Zheng Sun,et al.  Green's Function Method for Fast On-Line Learning Algorithm of Recurrent Neural Networks , 1991, NIPS.

[92]  Christian Igel,et al.  Improving the Rprop Learning Algorithm , 2000 .

[93]  Dimitris G. Papageorgiou,et al.  Neural-network methods for boundary value problems with irregular boundaries , 2000, IEEE Trans. Neural Networks Learn. Syst..

[94]  Takahiro Sasaki,et al.  Adaptation under Changing Environments with Various Rates of Inheritance of Acquired Characters: Comparison between Darwinian and Lamarckian Evolution , 1998, SEAL.

[95]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[96]  Takahiro Sasaki,et al.  Comparison between Lamarckian and Darwinian Evolution on a Model Using Neural Networks and Genetic Algorithms , 2000, Knowledge and Information Systems.

[97]  Michael I. Jordan Attractor dynamics and parallelism in a connectionist sequential machine , 1990 .

[98]  Bernhard Sendhoff,et al.  Evolutionary Optimization for Problem Classes with Lamarckian Inheritance , 2000 .

[99]  Lutz Prechelt,et al.  A quantitative study of experimental evaluations of neural network learning algorithms: Current research practice , 1996, Neural Networks.

[100]  Lutz Prechelt,et al.  Early Stopping-But When? , 1996, Neural Networks: Tricks of the Trade.

[101]  G. Mil’shtein A Method of Second-Order Accuracy Integration of Stochastic Differential Equations , 1979 .

[102]  David H. Wolpert,et al.  Mathematics of Generalization: Proceedings: SFI-CNLS Workshop on Formal Approaches to Supervised Learning (1992: Santa Fe, N. M.) , 1995 .

[103]  Giles Mayley,et al.  Landscapes, Learning Costs, and Genetic Assimilation , 1996, Evolutionary Computation.

[104]  Bernhard Sendhoff,et al.  Variable encoding of modular neural networks for time series prediction , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[105]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[106]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[107]  David H. Wolpert,et al.  The Mathematics of Generalization: The Proceedings of the SFI/CNLS Workshop on Formal Approaches to Supervised Learning , 1994 .

[108]  Sebastian Thrun,et al.  Learning to Learn , 1998, Springer US.

[109]  Kurt Hornik,et al.  Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks , 1990, Neural Networks.

[110]  S. Kosslyn,et al.  Why are What and Where Processed by Separate Cortical Visual Systems? A Computational Investigation , 1989, Journal of Cognitive Neuroscience.

[111]  William H. Press,et al.  Numerical recipes in C , 2002 .

[112]  Lutz Prechelt,et al.  Some notes on neural learning algorithm benchmarking , 1995, Neurocomputing.

[113]  Bernhard Sendhoff,et al.  Fitness Approximation In Evolutionary Computation - a Survey , 2002, GECCO.

[114]  J. Baldwin A New Factor in Evolution , 1896, The American Naturalist.

[115]  Richard K. Belew,et al.  Evolving networks: using the genetic algorithm with connectionist learning , 1990 .

[116]  Stefano Nolfi How Learning and Evolution Interact: The Case of a Learning Task which Differs from the Evolutionary Task , 1999, Adapt. Behav..

[117]  Raymond L. Watrous,et al.  Induction of Finite-State Automata Using Second-Order Recurrent Networks , 1991, NIPS.

[118]  HERBERT A. SIMON,et al.  The Architecture of Complexity , 1991 .

[119]  Reinhard Lohmann,et al.  Structure evolution and incomplete induction , 1993, Biological Cybernetics.

[120]  C. Goerick How irrelevant inputs affect MLP pattern based learning , 1999 .

[121]  Daniel L. Silver,et al.  The Parallel Transfer of Task Knowledge Using Dynamic Learning Rates Based on a Measure of Relatedness , 1996, Connect. Sci..

[122]  Dimitris G. Papageorgiou,et al.  Neural Network Methods for Boundary Value Problems Defined in Arbitrarily Shaped Domains , 1998, ArXiv.

[123]  Bernhard Sendhoff,et al.  Structure optimization of neural networks for evolutionary design optimization , 2005, Soft Comput..

[124]  Massih-Reza Amini,et al.  Learning Classification with Both Labeled and Unlabeled Data , 2002, ECML.

[125]  Simon Haykin,et al.  Neural networks , 1994 .

[126]  Bernhard Sendhoff,et al.  A framework for evolutionary optimization with approximate fitness functions , 2002, IEEE Trans. Evol. Comput..

[127]  Jiménez,et al.  Neural network differential equation and plasma equilibrium solver. , 1995, Physical review letters.

[128]  Ronald L. Rivest,et al.  Training a 3-node neural network is NP-complete , 1988, COLT '88.