Design of unequally spaced arrays for performance improvement

Classical antenna array synthesis techniques such as Fourier, Dolph-Chebyshev and Taylor synthesis efficiently obtain array current distributions for equally spaced arrays that generate a desired far-field radiation pattern function or keep important parameters like beamwidth and sidelobe level within prescribed performance bounds. However, the concept of optimization of the field pattern (e.g., by decreasing sidelobes or beamwidth) of an given equally spaced array realization by altering its element spacings still represents a challenging problem having considerable practical advantages. These include reduction in size, weight, and number of elements of the array. This paper describes a new approach to synthesis of unequally spaced arrays utilizing a simple inversion algorithm to obtain the element spacings from prescribed far-zone electric field and current distribution, or current distributions from prescribed far-zone electric field and element spacings.