RNA sequencing: the teenage years

[1]  G. Schaller Faculty Opinions recommendation of Single-Cell RNA Sequencing Resolves Molecular Relationships Among Individual Plant Cells. , 2019, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[2]  Barbara Di Camillo,et al.  How to design a single-cell RNA-sequencing experiment: pitfalls, challenges and perspectives , 2019, Briefings Bioinform..

[3]  I. Yanai,et al.  Integrating single-cell RNA-Seq with spatial transcriptomics in pancreatic ductal adenocarcinoma using multimodal intersection analysis , 2019 .

[4]  Evan Z. Macosko,et al.  Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution , 2019, Science.

[5]  H. Kang,et al.  Single-Cell RNA Sequencing Resolves Molecular Relationships Among Individual Plant Cells1[OPEN] , 2019, Plant Physiology.

[6]  I. Wu,et al.  A Single-Molecule Long-Read Survey of Human Transcriptomes using LoopSeq Synthetic Long Read Sequencing , 2019, bioRxiv.

[7]  I. Nookaew,et al.  Decoding the epitranscriptional landscape from native RNA sequences , 2018, bioRxiv.

[8]  S. Schwartz Faculty Opinions recommendation of Comprehensive single-cell transcriptional profiling of a multicellular organism. , 2018, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[9]  Björn Voß,et al.  RNA interactomics: recent advances and remaining challenges , 2018, F1000Research.

[10]  Angela N. Brooks,et al.  Nanopore native RNA sequencing of a human poly(A) transcriptome , 2018, bioRxiv.

[11]  Mark Gerstein,et al.  GENCODE reference annotation for the human and mouse genomes , 2018, Nucleic Acids Res..

[12]  Giulia Galotto,et al.  Unique Molecular Identifiers reveal a novel sequencing artefact with implications for RNA-Seq based gene expression analysis , 2018, Scientific Reports.

[13]  István Prazsák,et al.  Long-read sequencing uncovers a complex transcriptome topology in varicella zoster virus , 2018, BMC Genomics.

[14]  Juan Xie,et al.  A New Machine Learning-Based Framework for Mapping Uncertainty Analysis in RNA-Seq Read Alignment and Gene Expression Estimation , 2018, Front. Genet..

[15]  Sarah A. Teichmann,et al.  Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors , 2018, Science.

[16]  Catherine E. Braine,et al.  Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis , 2018, Science.

[17]  Aviv Regev,et al.  A revised airway epithelial hierarchy includes CFTR-expressing ionocytes , 2018, Nature.

[18]  Edouard Bertrand,et al.  A Growing Toolbox to Image Gene Expression in Single Cells: Sensitive Approaches for Demanding Challenges. , 2018, Molecular cell.

[19]  Angela M Yu,et al.  High-throughput determination of RNA structures , 2018, Nature Reviews Genetics.

[20]  William E. Allen,et al.  Three-dimensional intact-tissue sequencing of single-cell transcriptional states , 2018, Science.

[21]  Nejc Haberman,et al.  Data Science Issues in Studying Protein-RNA Interactions with CLIP Technologies. , 2018, Annual review of biomedical data science.

[22]  Thomas P. Quinn,et al.  Benchmarking differential expression analysis tools for RNA-Seq: normalization-based vs. log-ratio transformation-based methods , 2018, BMC Bioinformatics.

[23]  K. Weeks,et al.  Principles for targeting RNA with drug-like small molecules , 2018, Nature Reviews Drug Discovery.

[24]  Claus O. Wilke,et al.  Limitations of alignment-free tools in total RNA-seq quantification , 2018, BMC Genomics.

[25]  Christopher J. Cronin,et al.  Dynamics and Spatial Genomics of the Nascent Transcriptome by Intron seqFISH , 2018, Cell.

[26]  Florian Erhard,et al.  Dissecting newly transcribed and old RNA using GRAND-SLAM , 2018, Bioinform..

[27]  Aviv Regev,et al.  Comprehensive comparative analysis of 5’ end RNA sequencing methods , 2018, Nature Methods.

[28]  S. Gorski,et al.  Bacterial RNA Biology on a Genome Scale. , 2018, Molecular cell.

[29]  Jesse J. Lipp,et al.  SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis , 2018, Science.

[30]  Ryan M Spengler,et al.  Comprehensive multi-center assessment of accuracy, reproducibility and bias of small RNA-seq methods for quantitative miRNA profiling , 2018, Nature Biotechnology.

[31]  Rickard Sandberg,et al.  Identification of spatial expression trends in single-cell gene expression data , 2018, Nature Methods.

[32]  Shanrong Zhao,et al.  Evaluation of two main RNA-seq approaches for gene quantification in clinical RNA sequencing: polyA+ selection versus rRNA depletion , 2018, Scientific Reports.

[33]  Richard A. Muscat,et al.  Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding , 2018, Science.

[34]  Ralf Zimmer,et al.  Improved Ribo-seq enables identification of cryptic translation events , 2018, Nature Methods.

[35]  Sophie Lamarre,et al.  Optimization of an RNA-Seq Differential Gene Expression Analysis Depending on Biological Replicate Number and Library Size , 2018, Front. Plant Sci..

[36]  D. Naquin,et al.  Systematic comparison of small RNA library preparation protocols for next-generation sequencing , 2018, BMC Genomics.

[37]  A. Pyle,et al.  An ultraprocessive, accurate reverse transcriptase encoded by a metazoan group II intron , 2018, RNA.

[38]  Jernej Ule,et al.  Advances in CLIP Technologies for Studies of Protein-RNA Interactions. , 2018, Molecular cell.

[39]  Hagen U. Tilgner,et al.  Microfluidic isoform sequencing shows widespread splicing coordination in the human transcriptome , 2018, Genome research.

[40]  A. Ameur,et al.  Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics , 2018, Nucleic acids research.

[41]  Z. Weng,et al.  Elimination of PCR duplicates in RNA-seq and small RNA-seq using unique molecular identifiers , 2018, BMC Genomics.

[42]  Meaghan C. Sullivan,et al.  TimeLapse-seq: Adding a temporal dimension to RNA sequencing through nucleoside recoding , 2018, Nature Methods.

[43]  X. Zhuang,et al.  Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy , 2017, bioRxiv.

[44]  Veronika A. Herzog,et al.  SLAM-ITseq: sequencing cell type-specific transcriptomes without cell sorting , 2017, Development.

[45]  J. Doudna,et al.  Widespread Translational Remodeling during Human Neuronal Differentiation. , 2017, Cell reports.

[46]  I. Topisirovic,et al.  Dysregulation of mRNA translation and energy metabolism in cancer. , 2017, Advances in biological regulation.

[47]  Vincent L. Butty,et al.  Cross-site comparison of ribosomal depletion kits for Illumina RNAseq library construction , 2017, BMC Genomics.

[48]  Jungeui Hong,et al.  Incorporation of unique molecular identifiers in TruSeq adapters improves the accuracy of quantitative sequencing. , 2017, BioTechniques.

[49]  Dietmar Rieder,et al.  Osmium-Mediated Transformation of 4-Thiouridine to Cytidine as Key To Study RNA Dynamics by Sequencing. , 2017, Angewandte Chemie.

[50]  Patrik L. Ståhl,et al.  Spatial detection of fetal marker genes expressed at low level in adult human heart tissue , 2017, Scientific Reports.

[51]  Lars E. Borm,et al.  The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing , 2017, Science.

[52]  Jing Gong,et al.  RISE: a database of RNA interactome from sequencing experiments , 2017, Nucleic Acids Res..

[53]  Uwe Ohler,et al.  Beyond Read-Counts: Ribo-seq Data Analysis to Understand the Functions of the Transcriptome. , 2017, Trends in genetics : TIG.

[54]  Wei Chen,et al.  Alternative Polyadenylation: Methods, Findings, and Impacts , 2017, Genom. Proteom. Bioinform..

[55]  Zhao Zhang,et al.  PancanQTL: systematic identification of cis-eQTLs and trans-eQTLs in 33 cancer types , 2017, Nucleic Acids Res..

[56]  Johannes Zuber,et al.  Thiol-linked alkylation of RNA to assess expression dynamics , 2017, Nature Methods.

[57]  Matthias Zytnicki,et al.  mmquant: how to count multi-mapping reads? , 2017, BMC Bioinformatics.

[58]  Gene W. Yeo,et al.  A Large-Scale Binding and Functional Map of Human RNA Binding Proteins , 2017, bioRxiv.

[59]  Manolis Kellis,et al.  Best practices for genome-wide RNA structure analysis: combination of mutational profiles and drop-off information , 2017, bioRxiv.

[60]  Nicholas T Ingolia,et al.  Transcriptome-wide measurement of translation by ribosome profiling. , 2017, Methods.

[61]  Nicholas T. Ingolia,et al.  The Growing Toolbox for Protein Synthesis Studies. , 2017, Trends in biochemical sciences.

[62]  S. Oliviero,et al.  In vivo probing of nascent RNA structures reveals principles of cotranscriptional folding , 2017, Nucleic acids research.

[63]  Leonard D. Goldstein,et al.  Massively parallel nanowell-based single-cell gene expression profiling , 2017, BMC Genomics.

[64]  Hugo Y. K. Lam,et al.  Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis , 2017, Nature Communications.

[65]  Ira W. Deveson,et al.  Reference standards for next-generation sequencing , 2017, Nature Reviews Genetics.

[66]  S. Schuierer,et al.  A comprehensive assessment of RNA-seq protocols for degraded and low-quantity samples , 2017, BMC Genomics.

[67]  Weili Wang,et al.  Riborex: fast and flexible identification of differential translation from Ribo‐seq data , 2017, Bioinform..

[68]  R. Vale,et al.  RNA Phase Transitions in Repeat Expansion Disorders , 2017, Nature.

[69]  S. Teichmann,et al.  SpatialDE: identification of spatially variable genes , 2018, Nature Methods.

[70]  Fabian J Theis,et al.  The Human Cell Atlas , 2017, bioRxiv.

[71]  Tyson A. Clark,et al.  Androgen Receptor Variant AR-V9 Is Coexpressed with AR-V7 in Prostate Cancer Metastases and Predicts Abiraterone Resistance , 2017, Clinical Cancer Research.

[72]  S. Rai,et al.  A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data , 2017, PloS one.

[73]  Mark Akeson,et al.  Reading canonical and modified nucleotides in 16S ribosomal RNA using nanopore direct RNA sequencing , 2017, bioRxiv.

[74]  Brent S. Pedersen,et al.  Nanopore sequencing and assembly of a human genome with ultra-long reads , 2017, Nature Biotechnology.

[75]  T. Tuschl,et al.  Optimization of PAR-CLIP for transcriptome-wide identification of binding sites of RNA-binding proteins. , 2017, Methods.

[76]  Hugh E. Olsen,et al.  Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells , 2017, Nature Communications.

[77]  S. Teichmann,et al.  Exponential scaling of single-cell RNA-seq in the past decade , 2017, Nature Protocols.

[78]  Shalev Itzkovitz,et al.  Spatial transcriptomics: paving the way for tissue-level systems biology. , 2017, Current opinion in biotechnology.

[79]  Berthold Göttgens,et al.  Assessing the reliability of spike-in normalization for analyses of single-cell RNA sequencing data , 2017, bioRxiv.

[80]  A. Biton,et al.  Laser capture microdissection enables transcriptomic analysis of dividing and quiescent liver stages of Plasmodium relapsing species , 2017, Cellular microbiology.

[81]  Richard G. Jenner,et al.  Regulatory feedback from nascent RNA to chromatin and transcription , 2017, Nature Reviews Molecular Cell Biology.

[82]  Geet Duggal,et al.  Salmon: fast and bias-aware quantification of transcript expression using dual-phase inference , 2017, Nature Methods.

[83]  Jun Chen,et al.  Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq , 2017, Nature Protocols.

[84]  Eric Rivals,et al.  Ribo-seq enlightens codon usage bias , 2017, DNA research : an international journal for rapid publication of reports on genes and genomes.

[85]  K. Au,et al.  Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis , 2017, F1000Research.

[86]  Howard Y. Chang,et al.  Comparison of SHAPE reagents for mapping RNA structures inside living cells , 2017, RNA.

[87]  O. Larsson,et al.  Polysome-profiling in small tissue samples , 2017, bioRxiv.

[88]  Gregory R. Grant,et al.  Outlier detection for improved differential splicing quantification from RNA-Seq experiments with replicates , 2017, bioRxiv.

[89]  Charles C. Kim,et al.  Empirical assessment of analysis workflows for differential expression analysis of human samples using RNA-Seq , 2017, BMC Bioinformatics.

[90]  Andrey Alexeyenko,et al.  Spatially resolved transcriptome profiling in model plant species , 2017, Nature Plants.

[91]  Amadou Gaye,et al.  Extending the R Library PROPER to Enable Power Calculations for Isoform-Level Analysis with EBSeq , 2017, Front. Genet..

[92]  Rebecca A. Ihrie,et al.  Single cell analysis of human tissues and solid tumors with mass cytometry , 2017, Cytometry. Part B, Clinical cytometry.

[93]  Christelle Robert,et al.  The incredible complexity of RNA splicing , 2016, Genome Biology.

[94]  Lorenza Vitale,et al.  GeneBase 1.1: a tool to summarize data from NCBI gene datasets and its application to an update of human gene statistics , 2016, Database J. Biol. Databases Curation.

[95]  Eric T. Wang,et al.  Dysregulation of mRNA Localization and Translation in Genetic Disease , 2016, The Journal of Neuroscience.

[96]  J. Weissman,et al.  DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo , 2016, Nature Methods.

[97]  J. Beggs,et al.  Extremely fast and incredibly close: co-transcriptional splicing in budding yeast , 2016, bioRxiv.

[98]  Schraga Schwartz,et al.  Next-generation sequencing technologies for detection of modified nucleotides in RNAs , 2016, RNA biology.

[99]  Uwe Ohler,et al.  Super-resolution ribosome profiling reveals unannotated translation events in Arabidopsis , 2016, Proceedings of the National Academy of Sciences.

[100]  M. Ante,et al.  SIRVs: Spike-In RNA Variants as External Isoform Controls in RNA-Sequencing , 2016, bioRxiv.

[101]  B. Tian,et al.  Alternative polyadenylation of mRNA precursors , 2016, Nature Reviews Molecular Cell Biology.

[102]  Daniel R. Garalde,et al.  Highly parallel direct RNA sequencing on an array of nanopores , 2016, Nature Methods.

[103]  Jeffrey T Leek,et al.  Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown , 2016, Nature Protocols.

[104]  Ira W. Deveson,et al.  Spliced synthetic genes as internal controls in RNA sequencing experiments , 2016, Nature Methods.

[105]  T. Preiss,et al.  Dynamics of ribosome scanning and recycling revealed by translation complex profiling , 2016, Nature.

[106]  Patrik L. Ståhl,et al.  Visualization and analysis of gene expression in tissue sections by spatial transcriptomics , 2016, Science.

[107]  R. Reinhardt,et al.  cDNA Library Enrichment of Full Length Transcripts for SMRT Long Read Sequencing , 2016, PloS one.

[108]  M. Birtwistle,et al.  A Mechanistic Beta-Binomial Probability Model for mRNA Sequencing Data , 2016, PloS one.

[109]  J. Gagneur,et al.  TT-seq maps the human transient transcriptome , 2016, Science.

[110]  B. Blencowe,et al.  Global Mapping of Human RNA-RNA Interactions. , 2016, Molecular cell.

[111]  Niranjan Nagarajan,et al.  In Vivo Mapping of Eukaryotic RNA Interactomes Reveals Principles of Higher-Order Organization and Regulation. , 2016, Molecular cell.

[112]  Jill P. Mesirov,et al.  RNA Duplex Map in Living Cells Reveals Higher-Order Transcriptome Structure , 2016, Cell.

[113]  Shuqiang Li,et al.  CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq , 2016, Genome Biology.

[114]  Howard Y. Chang,et al.  irCLIP platform for efficient characterization of protein–RNA interactions , 2016, Nature Methods.

[115]  Dmitri D. Pervouchine,et al.  A benchmark for RNA-seq quantification pipelines , 2016, Genome Biology.

[116]  G. Friedlander,et al.  Using Synthetic Mouse Spike-In Transcripts to Evaluate RNA-Seq Analysis Tools , 2016, PloS one.

[117]  Jiannis Ragoussis,et al.  Benchmarking of the Oxford Nanopore MinION sequencing for quantitative and qualitative assessment of cDNA populations , 2016, Scientific Reports.

[118]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[119]  Dmitry Antipov,et al.  hybridSPAdes: an algorithm for hybrid assembly of short and long reads , 2016, Bioinform..

[120]  G. Barton,et al.  How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? , 2015, RNA.

[121]  Sean Davis,et al.  Statistical Genomics. Methods and Protocols. , 2016, Anticancer research.

[122]  J. Carpten,et al.  Translating RNA sequencing into clinical diagnostics: opportunities and challenges , 2016, Nature Reviews Genetics.

[123]  Gene W. Yeo,et al.  Robust transcriptome-wide discovery of RNA binding protein binding sites with enhanced CLIP (eCLIP) , 2016, Nature Methods.

[124]  M. Rosenfeld,et al.  Enhancers as non-coding RNA transcription units: recent insights and future perspectives , 2016, Nature Reviews Genetics.

[125]  Yin Tang,et al.  Protein Structure Is Related to RNA Structural Reactivity In Vivo. , 2016, Journal of molecular biology.

[126]  David R. Kelley,et al.  Widespread RNA binding by chromatin-associated proteins , 2016, Genome Biology.

[127]  M. Carmo-Fonseca,et al.  Mammalian NET-seq analysis defines nascent RNA profiles and associated RNA processing genome-wide , 2016, Nature Protocols.

[128]  Liewei Wang,et al.  Measure transcript integrity using RNA-seq data , 2016, BMC Bioinformatics.

[129]  A. Lambowitz,et al.  RNA-seq of human reference RNA samples using a thermostable group II intron reverse transcriptase , 2016, RNA.

[130]  Daniel J. Gaffney,et al.  A survey of best practices for RNA-seq data analysis , 2016, Genome Biology.

[131]  Christoph Ziegenhain,et al.  The impact of amplification on differential expression analyses by RNA-seq , 2016, Scientific Reports.

[132]  Marc Salit,et al.  Evaluation of the External RNA Controls Consortium (ERCC) reference material using a modified Latin square design , 2016, bioRxiv.

[133]  I. Hellmann,et al.  Comparative Analysis of Single-Cell RNA Sequencing Methods , 2016, bioRxiv.

[134]  M. Robinson,et al.  Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences , 2015, F1000Research.

[135]  Wei Li,et al.  The overlooked fact : fundamental need of spike-in controls for 2 virtually all genome-wide analyses , 2015 .

[136]  J. Doudna,et al.  Tunable protein synthesis by transcript isoforms in human cells , 2015, bioRxiv.

[137]  D. Arnett,et al.  Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted whole transcriptome RNA sequencing methodology for global gene expression analysis , 2015, BMC Genomics.

[138]  I. Pulyakhina,et al.  Non-sequential and multi-step splicing of the dystrophin transcript , 2015, RNA biology.

[139]  Kin-Fan Au,et al.  PacBio Sequencing and Its Applications , 2015, Genom. Proteom. Bioinform..

[140]  Dara L Aisner,et al.  An Oncogenic NTRK Fusion in a Patient with Soft-Tissue Sarcoma with Response to the Tropomyosin-Related Kinase Inhibitor LOXO-101. , 2015, Cancer discovery.

[141]  Li Tong,et al.  The impact of RNA-seq aligners on gene expression estimation , 2015, BCB.

[142]  Mick Watson,et al.  Errors in RNA-Seq quantification affect genes of relevance to human disease , 2015, Genome Biology.

[143]  Juliane C. Dohm,et al.  Exploiting single-molecule transcript sequencing for eukaryotic gene prediction , 2015, Genome Biology.

[144]  Javed Siddiqui,et al.  The use of exome capture RNA-seq for highly degraded RNA with application to clinical cancer sequencing , 2015, Genome research.

[145]  C. Mason,et al.  The impact of read length on quantification of differentially expressed genes and splice junction detection , 2015, Genome Biology.

[146]  David C Fargo,et al.  Bidirectional Transcription Arises from Two Distinct Hubs of Transcription Factor Binding and Active Chromatin. , 2015, Molecular cell.

[147]  B. Graveley,et al.  Determining exon connectivity in complex mRNAs by nanopore sequencing , 2015, Genome Biology.

[148]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[149]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[150]  X. Zhuang,et al.  Spatially resolved, highly multiplexed RNA profiling in single cells , 2015, Science.

[151]  H. Kimura,et al.  Mammalian NET-Seq Reveals Genome-wide Nascent Transcription Coupled to RNA Processing , 2015, Cell.

[152]  Sashwati Roy,et al.  Laser capture microdissection: Big data from small samples. , 2015, Histology and histopathology.

[153]  Yin Tang,et al.  The RNA structurome: transcriptome-wide structure probing with next-generation sequencing. , 2015, Trends in biochemical sciences.

[154]  Gunnar Rätsch,et al.  RiboDiff: detecting changes of mRNA translation efficiency from ribosome footprints , 2015, bioRxiv.

[155]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[156]  N. Sonenberg,et al.  Targeting the translation machinery in cancer , 2015, Nature Reviews Drug Discovery.

[157]  Alyssa C. Frazee,et al.  Ballgown bridges the gap between transcriptome assembly and expression analysis , 2015, Nature Biotechnology.

[158]  Z. Gu,et al.  Diminishing returns in next-generation sequencing (NGS) transcriptome data. , 2015, Gene.

[159]  T. Conway,et al.  Quantitative bacterial transcriptomics with RNA-seq. , 2015, Current opinion in microbiology.

[160]  S. Teichmann,et al.  Computational and analytical challenges in single-cell transcriptomics , 2015, Nature Reviews Genetics.

[161]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[162]  Hao Wu,et al.  PROPER: comprehensive power evaluation for differential expression using RNA-seq , 2015, Bioinform..

[163]  Timothy R. Hughes,et al.  High-throughput characterization of protein–RNA interactions , 2014, Briefings in functional genomics.

[164]  Shu-Bing Qian,et al.  Quantitative profiling of initiating ribosomes in vivo , 2014, Nature Methods.

[165]  Alexander van Oudenaarden,et al.  Spatially resolved transcriptomics and beyond , 2014, Nature Reviews Genetics.

[166]  Åsa K. Björklund,et al.  Tn5 transposase and tagmentation procedures for massively scaled sequencing projects , 2014, Genome research.

[167]  P. Moll,et al.  QuantSeq 3′ mRNA sequencing for RNA quantification , 2014, Nature Methods.

[168]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[169]  Sharon R Grossman,et al.  RNA-RNA Interactions Enable Specific Targeting of Noncoding RNAs to Nascent Pre-mRNAs and Chromatin Sites , 2014, Cell.

[170]  Edward S Boyden,et al.  Addendum: Independent optical excitation of distinct neural populations , 2014, Nature Methods.

[171]  Sheng Li,et al.  Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study , 2014, Nature Biotechnology.

[172]  S. Dudoit,et al.  Normalization of RNA-seq data using factor analysis of control genes or samples , 2014, Nature Biotechnology.

[173]  David P. Kreil,et al.  A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control consortium , 2014, Nature Biotechnology.

[174]  Paul Theodor Pyl,et al.  HTSeq – A Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[175]  Terence P. Speed,et al.  The Role of Spike-In Standards in the Normalization of RNA-seq , 2014 .

[176]  Nuno A. Fonseca,et al.  RNA-Seq Gene Profiling - A Systematic Empirical Comparison , 2014, bioRxiv.

[177]  Xia Li,et al.  RAID: a comprehensive resource for human RNA-associated (RNA–RNA/RNA–protein) interaction , 2014, RNA.

[178]  Donald Sharon,et al.  Defining a personal, allele-specific, and single-molecule long-read transcriptome , 2014, Proceedings of the National Academy of Sciences.

[179]  Steven Busan,et al.  RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP) , 2014, Nature Methods.

[180]  C. Perou,et al.  Comparison of RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling , 2014, BMC Genomics.

[181]  Y. Gilad,et al.  RNA-seq: impact of RNA degradation on transcript quantification , 2014, BMC Biology.

[182]  K. Morris,et al.  The rise of regulatory RNA , 2014, Nature Reviews Genetics.

[183]  Sean Thomas,et al.  Long-Read Sequencing of Chicken Transcripts and Identification of New Transcript Isoforms , 2014, PloS one.

[184]  Howard Y. Chang,et al.  Quantitative analysis of RNA-protein interactions on a massively parallel array for mapping biophysical and evolutionary landscapes , 2014, Nature Biotechnology.

[185]  J. Connett,et al.  Fibrotic extracellular matrix activates a profibrotic positive feedback loop. , 2014, The Journal of clinical investigation.

[186]  Timur Zhiyentayev,et al.  Single-cell in situ RNA profiling by sequential hybridization , 2014, Nature Methods.

[187]  Cesare Furlanello,et al.  A promoter-level mammalian expression atlas , 2015 .

[188]  George M. Church,et al.  Highly Multiplexed Subcellular RNA Sequencing in Situ , 2014, Science.

[189]  V. Kim,et al.  TAIL-seq: genome-wide determination of poly(A) tail length and 3' end modifications. , 2014, Molecular cell.

[190]  Joakim Lundeberg,et al.  Sequencing Degraded RNA Addressed by 3' Tag Counting , 2014, PloS one.

[191]  Irene Kuhn,et al.  Sorting out the FACS: a devil in the details. , 2014, Cell reports.

[192]  Charity W. Law,et al.  voom: precision weights unlock linear model analysis tools for RNA-seq read counts , 2014, Genome Biology.

[193]  Åsa K. Björklund,et al.  Full-length RNA-seq from single cells using Smart-seq2 , 2014, Nature Protocols.

[194]  Gioele La Manno,et al.  Quantitative single-cell RNA-seq with unique molecular identifiers , 2013, Nature Methods.

[195]  Laura L. Elo,et al.  Comparison of software packages for detecting differential expression in RNA-seq studies , 2013, Briefings Bioinform..

[196]  Manolis Kellis,et al.  Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo , 2013, Nature.

[197]  Wing Hung Wong,et al.  Characterization of the human ESC transcriptome by hybrid sequencing , 2013, Proceedings of the National Academy of Sciences.

[198]  Y. Zhang,et al.  In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features , 2013, Nature.

[199]  J. Harrow,et al.  Systematic evaluation of spliced alignment programs for RNA-seq data , 2013, Nature Methods.

[200]  Donald Sharon,et al.  A single-molecule long-read survey of the human transcriptome , 2013, Nature Biotechnology.

[201]  Nicolas Servant,et al.  A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis , 2013, Briefings Bioinform..

[202]  Aleksandra A. Kolodziejczyk,et al.  Accounting for technical noise in single-cell RNA-seq experiments , 2013, Nature Methods.

[203]  C. Mason,et al.  Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data , 2013, Genome Biology.

[204]  Rob Patro,et al.  Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms , 2013, Nature Biotechnology.

[205]  Carolina Wählby,et al.  In situ sequencing for RNA analysis in preserved tissue and cells , 2013, Nature Methods.

[206]  Xun Xu,et al.  SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads , 2013, Bioinform..

[207]  Aviv Regev,et al.  Comprehensive comparative analysis of RNA sequencing methods for degraded or low input samples , 2013, Nature Methods.

[208]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[209]  Barbara J Meyer,et al.  Condensin controls recruitment of RNA polymerase II to achieve nematode X-chromosome dosage compensation , 2013, eLife.

[210]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[211]  Gael P. Alamancos,et al.  Methods to study splicing from high-throughput RNA sequencing data. , 2013, Methods in molecular biology.

[212]  Gabor T. Marth,et al.  Scotty: a web tool for designing RNA-Seq experiments to measure differential gene expression , 2013, Bioinform..

[213]  Leighton J. Core,et al.  Precise Maps of RNA Polymerase Reveal How Promoters Direct Initiation and Pausing , 2013, Science.

[214]  Leming Shi,et al.  mRNA enrichment protocols determine the quantification characteristics of external RNA spike-in controls in RNA-Seq studies , 2013, Science China Life Sciences.

[215]  Nagarjun Vijay,et al.  Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA‐seq experiments , 2013, Molecular ecology.

[216]  Ching-Wei Chang,et al.  Coordinated regulation of synthesis and stability of RNA during the acute TNF-induced proinflammatory response , 2013, Proceedings of the National Academy of Sciences.

[217]  Piero Carninci,et al.  High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression , 2013, Genome research.

[218]  Howard Y. Chang,et al.  Control of somatic tissue differentiation by the long non-coding RNA TINCR , 2012, Nature.

[219]  Jonas Korlach,et al.  The birth of the Epitranscriptome: deciphering the function of RNA modifications , 2012, Genome Biology.

[220]  David A. Orlando,et al.  Revisiting Global Gene Expression Analysis , 2012, Cell.

[221]  T. Hashimshony,et al.  CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. , 2012, Cell reports.

[222]  Nadav S. Bar,et al.  Landscape of transcription in human cells , 2012, Nature.

[223]  Kunbin Qu,et al.  Selective Depletion of rRNA Enables Whole Transcriptome Profiling of Archival Fixed Tissue , 2012, PloS one.

[224]  Günter P. Wagner,et al.  Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples , 2012, Theory in Biosciences.

[225]  H. Swerdlow,et al.  A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers , 2012, BMC Genomics.

[226]  R. Sandberg,et al.  Full-Length mRNA-Seq from single cell levels of RNA and individual circulating tumor cells , 2012, Nature Biotechnology.

[227]  D. Dinsdale,et al.  Sustained translational repression by eIF2α-P mediates prion neurodegeneration , 2012, Nature.

[228]  A. Wakamatsu,et al.  Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals , 2012, Genome research.

[229]  Pawel Zajac,et al.  Highly multiplexed and strand-specific single-cell RNA 5′ end sequencing , 2012, Nature Protocols.

[230]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[231]  Sandrine Dudoit,et al.  GC-Content Normalization for RNA-Seq Data , 2011, BMC Bioinformatics.

[232]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[233]  S. Linnarsson,et al.  Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. , 2011, Genome research.

[234]  Cole Trapnell,et al.  Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq) , 2011, Proceedings of the National Academy of Sciences.

[235]  David Tollervey,et al.  Cross-linking, ligation, and sequencing of hybrids reveals RNA–RNA interactions in yeast , 2011, Proceedings of the National Academy of Sciences.

[236]  S. P. Fodor,et al.  Counting individual DNA molecules by the stochastic attachment of diverse labels , 2011, Proceedings of the National Academy of Sciences.

[237]  S. Linnarsson,et al.  Counting absolute numbers of molecules using unique molecular identifiers , 2011, Nature Methods.

[238]  K. Hansen,et al.  Sequencing technology does not eliminate biological variability , 2011, Nature Biotechnology.

[239]  N. Friedman,et al.  Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells , 2011, Nature Biotechnology.

[240]  Peter J. Shepard,et al.  Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. , 2011, RNA.

[241]  Kenta Nakai,et al.  Genome-wide characterization of transcriptional start sites in humans by integrative transcriptome analysis. , 2011, Genome research.

[242]  L. Coin,et al.  Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads , 2011, Genome Biology.

[243]  J. Weissman,et al.  Nascent transcript sequencing visualizes transcription at nucleotide resolution , 2011, Nature.

[244]  Toshiro K. Ohsumi,et al.  Genome-wide identification of polycomb-associated RNAs by RIP-seq. , 2010, Molecular cell.

[245]  Hideaki Sugawara,et al.  The Sequence Read Archive , 2010, Nucleic Acids Res..

[246]  D. Haussler,et al.  FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing , 2010, Nature Methods.

[247]  Eric T. Wang,et al.  Analysis and design of RNA sequencing experiments for identifying isoform regulation , 2010, Nature Methods.

[248]  Howard Y. Chang,et al.  Genome-wide measurement of RNA secondary structure in yeast , 2010, Nature.

[249]  N. Friedman,et al.  Comprehensive comparative analysis of strand-specific RNA sequencing methods , 2010, Nature Methods.

[250]  J. Ule,et al.  iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution , 2010, Nature Structural &Molecular Biology.

[251]  R. Gentleman,et al.  Independent filtering increases detection power for high-throughput experiments , 2010, Proceedings of the National Academy of Sciences.

[252]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[253]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[254]  R. Guigó,et al.  Transcriptome genetics using second generation sequencing in a Caucasian population , 2010, Nature.

[255]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[256]  Sandrine Dudoit,et al.  Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments , 2010, BMC Bioinformatics.

[257]  Peter M. Rice,et al.  The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants , 2009, Nucleic acids research.

[258]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[259]  T. Borodina,et al.  Transcriptome analysis by strand-specific sequencing of complementary DNA , 2009, Nucleic acids research.

[260]  Ryan D. Morin,et al.  Next-generation tag sequencing for cancer gene expression profiling. , 2009, Genome research.

[261]  Catalin C. Barbacioru,et al.  mRNA-Seq whole-transcriptome analysis of a single cell , 2009, Nature Methods.

[262]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[263]  E. Liu,et al.  Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. , 2009, Genome research.

[264]  Eric T. Wang,et al.  Alternative Isoform Regulation in Human Tissue Transcriptomes , 2008, Nature.

[265]  Tyson A. Clark,et al.  HITS-CLIP yields genome-wide insights into brain alternative RNA processing , 2008, Nature.

[266]  M. Stephens,et al.  RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. , 2008, Genome research.

[267]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[268]  M. Gerstein,et al.  The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing , 2008, Science.

[269]  S. Ranade,et al.  Stem cell transcriptome profiling via massive-scale mRNA sequencing , 2008, Nature Methods.

[270]  R. Lister,et al.  Highly Integrated Single-Base Resolution Maps of the Epigenome in Arabidopsis , 2008, Cell.

[271]  John T. Lis,et al.  Transcription Regulation Through Promoter-Proximal Pausing of RNA Polymerase II , 2008, Science.

[272]  Z. Xuan,et al.  Genome-wide in situ exon capture for selective resequencing , 2007, Nature Genetics.

[273]  A. Mortazavi,et al.  Genome-Wide Mapping of in Vivo Protein-DNA Interactions , 2007, Science.

[274]  W Brad Barbazuk,et al.  Gene discovery and annotation using LCM-454 transcriptome sequencing. , 2006, Genome research.

[275]  K. Weeks,et al.  RNA structure analysis at single nucleotide resolution by selective 2'-hydroxyl acylation and primer extension (SHAPE). , 2005, Journal of the American Chemical Society.

[276]  J. Steitz,et al.  Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. , 2004, RNA.

[277]  Jernej Ule,et al.  CLIP Identifies Nova-Regulated RNA Networks in the Brain , 2003, Science.

[278]  S. Niranjanakumari,et al.  Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. , 2002, Methods.

[279]  S. Tenenbaum,et al.  Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[280]  P. Brown,et al.  Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[281]  O. Britanova,et al.  Amplification of cDNA ends based on template-switching effect and step-out PCR. , 1999, Nucleic acids research.

[282]  J. Steitz Polypeptide Chain Initiation: Nucleotide Sequences of the Three Ribosomal Binding Sites in Bacteriophage R17 RNA , 1969, Nature.

[283]  J. T. Madison,et al.  Structure of a Ribonucleic Acid , 1965, Science.

[284]  J. Q. Stewart AN INVERSE DISTANCE VARIATION FOR CERTAIN SOCIAL INFLUENCES. , 1941, Science.

[285]  F. Nicassio,et al.  Uncovering the Stability of Mature miRNAs by 4-Thio-Uridine Metabolic Labeling. , 2018, Methods in molecular biology.

[286]  Andrew C. Adey,et al.  Single-Cell Transcriptional Profiling of a Multicellular Organism , 2017 .

[287]  V. Malladi,et al.  Computational Approaches for Mining GRO-Seq Data to Identify and Characterize Active Enhancers. , 2017, Methods in molecular biology.

[288]  Rebecca A. Ihrie,et al.  Single Cell Analysis of Human Tissues and Solid Tumors with Mass Cytometry. , 2017, Cytometry. Part B, Clinical cytometry.

[289]  Hugh E. Olsen,et al.  The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community , 2016, Genome Biology.

[290]  Hao Wu,et al.  Experimental Design and Power Calculation for RNA-seq Experiments , 2016, Statistical Genomics.

[291]  G. Barton,et al.  Erratum: How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? , 2016, RNA.

[292]  J. Eberwine,et al.  Single-neuron isolation for RNA analysis using pipette capture and laser capture microdissection. , 2015, Cold Spring Harbor protocols.

[293]  Mark D. Robinson,et al.  Differential analyses for RNA-seq : transcript-level estimates improve gene-level inferences Supplementary Material , 2015 .

[294]  Piero Carninci,et al.  Detecting expressed genes using CAGE. , 2014, Methods in molecular biology.

[295]  Somnath Datta,et al.  Statistical analysis of next generation sequencing date , 2014 .

[296]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[297]  Robert Patro,et al.  Sailfish: Alignment-free Isoform Quantification from RNA-seq Reads using Lightweight Algorithms , 2013, ArXiv.

[298]  Zhoutao Chen,et al.  Ribosomal RNA depletion for massively parallel bacterial RNA-sequencing applications. , 2011, Methods in molecular biology.

[299]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[300]  Thomas Tuschl,et al.  Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. , 2008, Methods.