View Invariant Gait Recognition

Recognition by gait is of particular interest since it is the biometric that is available at the lowest resolution, or when other biometrics are (intentionally) obscured. Gait as a biometric has now shown increasing recognition capability. There are many approaches and these show that recognition can achieve excellent performance on current large databases. The majority of these approaches are planar 2D, largely since the early large databases featured subjects walking in a plane normal to the camera view. To extend deployment capability, we need viewpoint invariant gait biometrics. We describe approaches where viewpoint invariance is achieved by 3D approaches or in 2D. In the first group, the identification relies on parameters extracted from the 3D body deformation during walking. These methods use several video cameras and the 3D reconstruction is achieved after a camera calibration process. On the other hand, the 2D gait biometric approaches use a single camera, usually positioned perpendicular to the subject’s walking direction. Because in real surveillance scenarios a system that operates in an unconstrained environment is necessary, many of the recent gait analysis approaches are orientated toward view-invariant gait recognition.

[1]  A. B. Drought,et al.  WALKING PATTERNS OF NORMAL MEN. , 1964, The Journal of bone and joint surgery. American volume.

[2]  A. Laurentini,et al.  The Visual Hull Concept for Silhouette-Based Image Understanding , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Edward H. Adelson,et al.  Analyzing and recognizing walking figures in XYT , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[5]  Tricia Walker,et al.  Computer science , 1996, English for academic purposes series.

[6]  J. Knapik,et al.  Load carriage using packs: a review of physiological, biomechanical and medical aspects. , 1996, Applied ergonomics.

[7]  Y. T. Wang,et al.  Influence of carrying book bags on gait cycle and posture of youths. , 1997, Ergonomics.

[8]  Mark S. Nixon,et al.  Measuring Gait Signatures Which are Invariant to Their Trajectory , 1999 .

[9]  M. Nixon,et al.  Automatic Gait Recognition via Model-Based Evidence Gathering , 1999 .

[10]  Joachim M. Buhmann,et al.  Empirical evaluation of dissimilarity measures for color and texture , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[11]  Mark S. Nixon,et al.  Recognising humans by gait via parametric canonical space , 1999, Artif. Intell. Eng..

[12]  Aaron F. Bobick,et al.  A Multi-view Method for Gait Recognition Using Static Body Parameters , 2001, AVBPA.

[13]  Y. T. Wang,et al.  Evaluation of book backpack load during walking , 2001, Ergonomics.

[14]  Ralph Gross,et al.  The CMU Motion of Body (MoBo) Database , 2001 .

[15]  Mark S. Nixon,et al.  Extended Model-Based Automatic Gait Recognition of Walking and Running , 2001, AVBPA.

[16]  Trevor Darrell,et al.  Integrated face and gait recognition from multiple views , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[17]  Mark S. Nixon,et al.  Automatic Gait Recognition by Symmetry Analysis , 2001, AVBPA.

[18]  R. Plankers,et al.  Articulated soft objects for video-based body modeling , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[19]  Sudeep Sarkar,et al.  The gait identification challenge problem: data sets and baseline algorithm , 2002, Object recognition supported by user interaction for service robots.

[20]  Larry S. Davis,et al.  Motion-based recognition of people in EigenGait space , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[21]  W. Eric L. Grimson,et al.  Gait analysis for recognition and classification , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[22]  John N. Carter,et al.  Viewpoint invariance in automatic gait recognition , 2002 .

[23]  Sudeep Sarkar,et al.  Baseline results for the challenge problem of HumanID using gait analysis , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[24]  Bir Bhanu,et al.  Human Recognition on Combining Kinematic and Stationary Features , 2003, AVBPA.

[25]  Tieniu Tan,et al.  Automatic gait recognition based on statistical shape analysis , 2003, IEEE Trans. Image Process..

[26]  Mark S. Nixon,et al.  Automatic extraction and description of human gait models for recognition purposes , 2003, Comput. Vis. Image Underst..

[27]  Rama Chellappa,et al.  Gait Analysis for Human Identification , 2003, AVBPA.

[28]  Tieniu Tan,et al.  Recent developments in human motion analysis , 2003, Pattern Recognit..

[29]  Tieniu Tan,et al.  Silhouette Analysis-Based Gait Recognition for Human Identification , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Rama Chellappa,et al.  Towards a view invariant gait recognition algorithm , 2003, Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance, 2003..

[31]  Rama Chellappa,et al.  Fusion of gait and face for human identification , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[32]  Mark S. Nixon,et al.  What image information is important in silhouette-based gait recognition? , 2004, CVPR 2004.

[33]  Pascal Fua,et al.  3D tracking for gait characterization and recognition , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[34]  Mark R. Stevens,et al.  Methods for Volumetric Reconstruction of Visual Scenes , 2004, International Journal of Computer Vision.

[35]  Mark S. Nixon,et al.  On a Large Sequence-Based Human Gait Database , 2004 .

[36]  Mark S. Nixon,et al.  What image information is important in silhouette-based gait recognition? , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[37]  Eamonn J. Keogh,et al.  Exact indexing of dynamic time warping , 2002, Knowledge and Information Systems.

[38]  Carlos Orrite-Uruñuela,et al.  2D silhouette and 3D skeletal models for human detection and tracking , 2004, ICPR 2004.

[39]  Mark S. Nixon,et al.  Automated markerless extraction of walking people using deformable contour models , 2004, Comput. Animat. Virtual Worlds.

[40]  Jeffrey E. Boyd,et al.  Synchronization of oscillations for machine perception of gaits , 2004, Comput. Vis. Image Underst..

[41]  John N. Carter,et al.  Towards pose invariant gait reconstruction , 2005, IEEE International Conference on Image Processing 2005.

[42]  Sudeep Sarkar,et al.  The humanID gait challenge problem: data sets, performance, and analysis , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Nikolaus F. Troje,et al.  View-independent person identification from human gait , 2005, Neurocomputing.

[44]  Mark S. Nixon,et al.  Is Enough Enough? What Is Sufficiency in Biometric Data? , 2006, ICIAR.

[45]  Hua Li,et al.  3D gait recognition using multiple cameras , 2006, 7th International Conference on Automatic Face and Gesture Recognition (FGR06).

[46]  Mark S. Nixon,et al.  Automatic Recognition by Gait , 2006, Proceedings of the IEEE.

[47]  R. L. Attwells,et al.  Influence of carrying heavy loads on soldiers' posture, movements and gait , 2006, Ergonomics.

[48]  Mark S. Nixon,et al.  A smart environment for biometric capture , 2006, 2006 IEEE International Conference on Automation Science and Engineering.

[49]  Mark S. Nixon,et al.  Zernike velocity moments for sequence-based description of moving features , 2006, Image Vis. Comput..

[50]  Mark S. Nixon,et al.  Model-Based Feature Extraction for Gait Analysis and Recognition , 2007, MIRAGE.

[51]  Mark S. Nixon,et al.  Human Perambulation as a Self Calibrating Biometric , 2007, AMFG.

[52]  Rama Chellappa,et al.  Markerless Monocular Tracking of Articulated Human Motion , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[53]  Dimitris N. Metaxas,et al.  Human gait recognition at sagittal plane , 2007, Image Vis. Comput..

[54]  Euntai Kim,et al.  A New Gait Representation for Human Identification: Mass Vector , 2007, 2007 2nd IEEE Conference on Industrial Electronics and Applications.

[55]  Shi Chen,et al.  An Invariant Appearance Model for Gait Recognition , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[56]  Peter K. Larsen,et al.  Gait analysis in forensic medicine , 2007, Electronic Imaging.

[57]  S. R. Jammalamadaka,et al.  Directional Statistics, I , 2011 .