A multi-site intercomparison of integrated water vapour observations for climate change analysis

Abstract. Water vapour plays a dominant role in the climate change debate. However, observing water vapour over a climatological time period in a consistent and homogeneous manner is challenging. On one hand, networks of ground-based instruments able to retrieve homogeneous integrated water vapour (IWV) data sets are being set up. Typical examples are Global Navigation Satellite System (GNSS) observation networks such as the International GNSS Service (IGS), with continuous GPS (Global Positioning System) observations spanning over the last 15+ years, and the AErosol RObotic NETwork (AERONET), providing long-term observations performed with standardized and well-calibrated sun photometers. On the other hand, satellite-based measurements of IWV already have a time span of over 10 years (e.g. AIRS) or are being merged to create long-term time series (e.g. GOME, SCIAMACHY, and GOME-2). This study performs an intercomparison of IWV measurements from satellite devices (in the visible, GOME/SCIAMACHY/GOME-2, and in the thermal infrared, AIRS), in situ measurements (radiosondes) and ground-based instruments (GPS, sun photometer), to assess their use in water vapour trends analysis. To this end, we selected 28 sites world-wide for which GPS observations can directly be compared with coincident satellite IWV observations, together with sun photometer and/or radiosonde measurements. The mean biases of the different techniques compared to the GPS estimates vary only between −0.3 to 0.5 mm of IWV. Nevertheless these small biases are accompanied by large standard deviations (SD), especially for the satellite instruments. In particular, we analysed the impact of clouds on the IWV agreement. The influence of specific issues for each instrument on the intercomparison is also investigated (e.g. the distance between the satellite ground pixel centre and the co-located ground-based station, the satellite scan angle, daytime/nighttime differences). Furthermore, we checked if the properties of the IWV scatter plots between these different instruments are dependent on the geography and/or altitude of the station. For all considered instruments, the only dependency clearly detected is with latitude: the SD of the IWV observations with respect to the GPS IWV retrievals decreases with increasing latitude and decreasing mean IWV.

[1]  Holger Vömel,et al.  Radiation Dry Bias of the Vaisala RS92 Humidity Sensor , 2007 .

[2]  J. Barnard,et al.  Comparison of columnar water-vapor measurements from solar transmittance methods. , 2001, Applied optics.

[3]  N. Kämpfer,et al.  Tropospheric Comparisons of Vaisala Radiosondes and Balloon-Borne Frost-Point and Lyman-α Hygrometers during the LAUTLOS-WAVVAP Experiment , 2008 .

[4]  D. C. Hogg,et al.  Measurement of excess radio transmission length on earth-space paths , 1981 .

[5]  F. Wentz,et al.  How Much More Rain Will Global Warming Bring? , 2007, Science.

[6]  Steven Businger,et al.  The Promise of GPS in Atmospheric Monitoring , 1996 .

[7]  Stefan Noel,et al.  Preliminary results of GOME-2 water vapour retrievals and first applications in polar regions , 2008 .

[8]  Anup K. Prasad,et al.  Validation of MODIS Terra, AIRS, NCEP/DOE AMIP‐II Reanalysis‐2, and AERONET Sun photometer derived integrated precipitable water vapor using ground‐based GPS receivers over India , 2009 .

[9]  W. Elliott,et al.  Radiosonde-Based Northern Hemisphere Tropospheric Water Vapor Trends , 2001 .

[10]  W. Elliott,et al.  Tropospheric Water Vapor Climatology and Trends over North America: 1973–93 , 1996 .

[11]  T. Herring,et al.  GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System , 1992 .

[12]  R. Vose,et al.  Radiosonde‐based trends in precipitable water over the Northern Hemisphere: An update , 2009 .

[13]  William L. Smith,et al.  AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[14]  Steven Businger,et al.  GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water , 1994 .

[15]  Marie-Noëlle Bouin,et al.  Comparison of ground‐based GPS precipitable water vapour to independent observations and NWP model reanalyses over Africa , 2007 .

[16]  Christian Melsheimer,et al.  Integrated water vapor above Ny Ålesund, Spitsbergen: a multi-sensor intercomparison , 2008 .

[17]  P. Steigenberger,et al.  On the homogeneity and interpretation of precipitable water time series derived from global GPS observations , 2009 .

[18]  Jim R. Ray,et al.  On the precision and accuracy of IGS orbits , 2009 .

[19]  Junhong Wang,et al.  Systematic Errors in Global Radiosonde Precipitable Water Data from Comparisons with Ground-Based GPS Measurements , 2008 .

[20]  Thomas A. Herring,et al.  Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data , 1997 .

[21]  A drop in upper tropospheric humidity in autumn 2001, as derived from radiosonde measurements at Uccle, Belgium , 2010 .

[22]  A. Dai,et al.  Radiation dry bias correction of Vaisala RS92 humidity data and its impacts on historical radiosonde data , 2013 .

[23]  G. Deblonde,et al.  Evaluation of GPS precipitable water over canada and the IGS network , 2005 .

[24]  Peter W. Thorne,et al.  An Analysis of Tropospheric Humidity Trends from Radiosondes , 2009 .

[25]  A. T. Young,et al.  Revised optical air mass tables and approximation formula. , 1989, Applied optics.

[26]  I. Shapiro,et al.  Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length , 1985 .

[27]  James G. Yoe,et al.  The Validation of AIRS Retrievals of Integrated Precipitable Water Vapor Using Measurements from a Network of Ground-Based GPS Receivers over the Contiguous United States , 2008 .

[28]  Peter Steigenberger,et al.  Validation of precipitable water vapor within the NCEP/DOE reanalysis using global GPS observations from one decade. , 2010 .

[29]  Steffen Beirle,et al.  Global trends (1996–2003) of total column precipitable water observed by Global Ozone Monitoring Experiment (GOME) on ERS‐2 and their relation to near‐surface temperature , 2006 .

[30]  Isao Naito,et al.  Comparisons of GPS‐derived precipitable water vapors with radiosonde observations in Japan , 2000 .

[31]  Christian Rocken,et al.  Sensing integrated water vapor along GPS ray paths , 1997 .

[32]  Christian Rocken,et al.  GPS/STORM—GPS Sensing of Atmospheric Water Vapor for Meteorology , 1995 .

[33]  Christian Melsheimer,et al.  A multi-instrument comparison of integrated water vapour measurements at a high latitude site , 2012 .

[34]  Xavier Collilieux,et al.  IGS08: the IGS realization of ITRF2008 , 2012, GPS Solutions.

[35]  K. Trenberth,et al.  Earth's annual global mean energy budget , 1997 .

[36]  José A. Sobrino,et al.  Trends in column integrated water vapour over Europe from 1973 to 2003 , 2011 .

[37]  Moustafa T. Chahine,et al.  Biases in total precipitable water vapor climatologies from Atmospheric Infrared Sounder and Advanced Microwave Scanning Radiometer , 2006 .

[38]  Junhong Wang,et al.  Trends in Tropospheric Humidity from 1970 to 2008 over China from a Homogenized Radiosonde Dataset , 2012 .

[39]  Gerd Gendt,et al.  On the determination of atmospheric water vapor from GPS measurements , 2003 .

[40]  Annmarie Eldering,et al.  Characterization of AIRS temperature and water vapor measurement capability using correlative observations , 2005 .

[41]  Alexander Smirnov,et al.  Columnar water vapor retrievals from multifilter rotating shadowband radiometer data , 2009 .

[42]  Peter W. Thorne,et al.  A New Approach to Homogenize Daily Radiosonde Humidity Data , 2011 .

[43]  T. Wagner Description of the MPI-Mainz H 2 O retrieval ( Version 5 . 0 , March 2011 ) , 2011 .

[44]  Jan Askne,et al.  Estimation of tropospheric delay for microwaves from surface weather data , 1987 .

[45]  Chris Rizos,et al.  The International GNSS Service in a changing landscape of Global Navigation Satellite Systems , 2009 .

[46]  Paul Tregoning,et al.  Accuracy of absolute precipitable water vapor estimates from GPS observations , 1998 .

[47]  A NEW COMPOSITE OBSERVING SYSTEM STRATEGY FOR GROUND-BASED GPS METEOROLOGY , 2002 .

[48]  Kevin E. Trenberth,et al.  Trends and variability in column-integrated atmospheric water vapor , 2005 .

[49]  J. Zumberge,et al.  Precise point positioning for the efficient and robust analysis of GPS data from large networks , 1997 .

[50]  Michael F. Wehner,et al.  Relationship between temperature and precipitable water changes over tropical oceans , 2007 .

[51]  Steven Businger,et al.  Sensing atmospheric water vapor with the global positioning system , 1993 .

[52]  B. Soden,et al.  An Assessment of Climate Feedbacks in Coupled Ocean–Atmosphere Models , 2006 .

[53]  Jim R. Ray,et al.  Sub-daily alias and draconitic errors in the IGS orbits , 2011, GPS Solutions.

[54]  Ying-Hwa Kuo,et al.  Assimilation of Precipitable Water Measurements into a Mesoscale Numerical Model , 1993 .

[55]  Matthias Schneider,et al.  Continuous quality assessment of atmospheric water vapour measurement techniques: FTIR, Cimel, MFRSR, GPS, and Vaisala RS92 , 2010 .

[56]  J. Schulz,et al.  Comparison of monthly means of global total column water vapor retrieved from independent satellite observations , 2010 .

[57]  W. Elliott,et al.  Column Water Vapor Content in Clear and Cloudy Skies , 1993 .

[58]  William L. Smith,et al.  AIRS/AMSU/HSB validation , 2003, IEEE Trans. Geosci. Remote. Sens..

[59]  Gunnar Elgered,et al.  Multi-technique comparisons of 10 years of wet delay estimates on the west coast of Sweden , 2012, Journal of Geodesy.

[60]  Holger Vömel,et al.  Thin Film Capacitive Sensors , 2013 .

[61]  Gunnar Elgered,et al.  Geodesy by radio interferometry - Water vapor radiometry for estimation of the wet delay , 1991 .

[62]  Russell S. Vose,et al.  Overview of the Integrated Global Radiosonde Archive , 2006 .

[63]  Sung H. Byun,et al.  A new type of troposphere zenith path delay product of the international GNSS service , 2009 .

[64]  J. Saastamoinen Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites , 2013 .

[65]  David N. Whiteman,et al.  Accuracy assessment and correction of Vaisala RS92 radiosonde water vapor measurements , 2009 .

[66]  Steffen Beirle,et al.  MAX-DOAS observations of the total atmospheric water vapour column and comparison with independent observations , 2012 .

[67]  A. Mangold,et al.  Aerosol Optical Depth measurements at 340 nm with a Brewer spectrophotometer and comparison with Cimel sunphotometer observations at Uccle, Belgium , 2010 .

[68]  Junhong Wang,et al.  A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements , 2007 .

[69]  Alexander Smirnov,et al.  Aeronet's Version 2.0 quality assurance criteria , 2006, SPIE Asia-Pacific Remote Sensing.

[70]  Junhong Wang,et al.  Global estimates of water‐vapor‐weighted mean temperature of the atmosphere for GPS applications , 2005 .

[71]  D. Althausen,et al.  Correction Method for RS80-A Humicap Humidity Profiles and Their Validation by Lidar Backscattering Profiles in Tropical Cirrus Clouds , 2005 .

[72]  Steven Businger,et al.  GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water , 1996 .

[73]  Joachim Urban,et al.  Satellite Sensors Measuring Atmospheric Water Vapour , 2013 .

[74]  G. Veis The Use of Artificial Satellites for Geodesy , 1963 .

[75]  H. Schuh,et al.  Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data , 2006 .

[76]  R. Green,et al.  Water vapor column abundance retrievals during FIFE , 1992 .

[77]  Véronique Ducrocq,et al.  GPS zenith delay sensitivity evaluated from high‐resolution numerical weather prediction simulations of the 8–9 September 2002 flash flood over southeastern France , 2006 .

[78]  Robert O. Knuteson,et al.  An assessment of the absolute accuracy of the Atmospheric Infrared Sounder v5 precipitable water vapor product at tropical, midlatitude, and arctic ground-truth sites: September 2002 , 2010 .