Characterizing weighted MSO for trees by branching transitive closure logics

We introduce the branching transitive closure operator on progressing weighted monadic second-order logic formulas where the branching corresponds in a natural way to the branching inherent in trees. For arbitrary commutative semirings, we prove that weighted monadic second order logics on trees is equivalent to the definability by formulas which start with one of the following operators: (i) a branching transitive closure or (ii) one existential second-order quantifier followed by one universal first-order quantifier; in both cases the operator is applied to step-formulas over (a) Boolean first-order logic enriched by modulo counting or (b) Boolean monadic-second order logic.

[1]  Arto Salomaa,et al.  Semirings, Automata, Languages , 1985, EATCS Monographs on Theoretical Computer Science.

[2]  A. Salomaa Wechler, W., The Concept of Fuzziness in Automata and Language Theory. Studien zur Algebra und ihre Anwendungen 5. Berlin, Akademie‐Verlag 1978. 148 S., M 27,– , 1980 .

[3]  Manfred Droste,et al.  Kleene and Büchi Theorems for Weighted Automata and Multi-valued Logics over Arbitrary Bounded Lattices , 2010, Developments in Language Theory.

[4]  Ferenc Gécseg,et al.  Tree Languages , 1997, Handbook of Formal Languages.

[5]  Stephan Kepser,et al.  Monadic Second-Order Logic and Transitive Closure Logics Over Trees , 2006, WoLLIC.

[6]  Kevin Knight,et al.  Applications of Weighted Automata in Natural Language Processing , 2009 .

[7]  Jacques Sakarovitch,et al.  Elements of Automata Theory , 2009 .

[8]  Peter Lammich,et al.  Tree Automata , 2009, Arch. Formal Proofs.

[9]  Manfred Droste,et al.  Weighted tree automata and weighted logics , 2006, Theor. Comput. Sci..

[10]  Manfred Droste,et al.  Weighted Logics for Unranked Tree Automata , 2009, Theory of Computing Systems.

[11]  James W. Thatcher,et al.  Generalized finite automata theory with an application to a decision problem of second-order logic , 1968, Mathematical systems theory.

[12]  U. Hebisch,et al.  Semirings: Algebraic Theory and Applications in Computer Science , 1998 .

[13]  Jarkko Kari,et al.  Digital Image Compression , 2009 .

[14]  W. Wechler The concept of fuzziness in automata and language theory , 1978 .

[15]  Arto Salomaa,et al.  Semirings, Automata and Languages , 1985 .

[16]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[17]  Paul Gastin,et al.  Weighted automata and weighted logics , 2005, Theor. Comput. Sci..

[18]  J. Neumann,et al.  The Logic of Quantum Mechanics , 1936 .

[19]  Balder ten Cate,et al.  XPath, transitive closure logic, and nested tree walking automata , 2008, PODS.

[20]  J. Golan Semirings and their applications , 1999 .

[21]  John Doner,et al.  Tree Acceptors and Some of Their Applications , 1970, J. Comput. Syst. Sci..

[22]  Benedikt Bollig,et al.  Pebble Weighted Automata and Transitive Closure Logics , 2010, ICALP.

[23]  Wolfgang Thomas,et al.  Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..

[24]  Jean Berstel,et al.  Recognizable Formal Power Series on Trees , 1982, Theor. Comput. Sci..

[25]  Mehryar Mohri,et al.  Weighted Automata Algorithms , 2009 .

[26]  Johann A. Makowsky,et al.  The Expressive Power of Transitive Closue and 2-way Multihead Automata , 1991, CSL.

[27]  Andreas Maletti,et al.  Compositions of tree series transformations , 2006, Theor. Comput. Sci..

[28]  Manfred Droste,et al.  Weighted automata and multi-valued logics over arbitrary bounded lattices , 2012, Theor. Comput. Sci..

[29]  Ina Fichtner,et al.  Traces, Series-Parallel Posets, and Pictures: A Weighted Study , 2009 .

[30]  Emil L. Post Introduction to a General Theory of Elementary Propositions , 1921 .

[31]  H. Vogler,et al.  Weighted Tree Automata and Tree Transducers , 2009 .