Piecewise Boolean Algebras and Their Domains
暂无分享,去创建一个
[1] Theodore Hailperin,et al. Boole’s Algebra Isn’t Boolean Algebra , 1981 .
[2] Jan Hamhalter,et al. Isomorphisms of ordered structures of abelian C⁎-subalgebras of C⁎-algebras , 2011 .
[3] Adam Grabowski,et al. Orthomodular Lattices , 2008, Formaliz. Math..
[4] CHARACTERIZATIONS OF PARTITION LATTICES , 1994 .
[5] George Grätzer,et al. On the lattice of subalgebras of a Boolean algebra , 1972 .
[6] Martin Aigner,et al. Uniformität des Verbandes der Partitionen , 1974 .
[7] Stanley P. Gudder. Partial algebraic structures associated with orthomodular posets. , 1972 .
[8] P. A. Firby. Lattices and Compactifications, III , 1973 .
[9] E. R. Emmet,et al. Handbook of logic , 1966 .
[10] Robin Milner,et al. On Observing Nondeterminism and Concurrency , 1980, ICALP.
[11] Oystein Ore,et al. Theory of equivalence relations , 1942 .
[12] Chris Heunen,et al. Noncommutativity as a Colimit , 2010, Appl. Categorical Struct..
[13] R. I. G. Hughes,et al. Semantic alternatives in partial Boolean quantum logic , 1985, J. Philos. Log..
[14] Kim G. Larsen,et al. Stone Duality for Markov Processes , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.
[15] Dana S. Scott,et al. Some Domain Theory and Denotational Semantics in Coq , 2009, TPHOLs.
[16] F. Haimo. Some limits of Boolean algebras , 1951 .
[17] John Harding,et al. Abelian subalgebras and the Jordan structure of a von Neumann algebra , 2010, 1009.4945.
[18] David Sachs. Partition and modulated lattices. , 1961 .
[19] Rui Soares Barbosa,et al. Unsharp Values, Domains and Topoi , 2012 .
[20] James Laird. Locally Boolean domains , 2005, Theor. Comput. Sci..
[21] P. D. Finch. On the Structure of Quantum Logic , 1969, J. Symb. Log..
[22] A. Jung,et al. Cartesian closed categories of domains , 1989 .
[23] Sabine Koppelberg,et al. Handbook of Boolean Algebras , 1989 .
[24] Bas Spitters,et al. A Topos for Algebraic Quantum Theory , 2007, 0709.4364.
[25] Samson Abramsky,et al. Domain theory , 1995, LICS 1995.
[26] Mirko Navara,et al. Subalgebras of Orthomodular Lattices , 2010, Order.
[27] Steven J. Vickers,et al. Quantales, observational logic and process semantics , 1993, Mathematical Structures in Computer Science.
[28] Sarah Cannon,et al. The Spectral Presheaf of an Orthomodular Lattice Some steps towards generalized Stone duality , 2013 .
[29] Chris Heunen,et al. Characterizations of Categories of Commutative C*-Subalgebras , 2011, 1106.5942.