Piecewise Boolean Algebras and Their Domains

We characterise piecewise Boolean domains, that is, those domains that arise as Boolean subalgebras of a piecewise Boolean algebra. This leads to equivalent descriptions of the category of piecewise Boolean algebras: either as piecewise Boolean domains equipped with an orientation, or as full structure sheaves on piecewise Boolean domains.

[1]  Theodore Hailperin,et al.  Boole’s Algebra Isn’t Boolean Algebra , 1981 .

[2]  Jan Hamhalter,et al.  Isomorphisms of ordered structures of abelian C⁎-subalgebras of C⁎-algebras , 2011 .

[3]  Adam Grabowski,et al.  Orthomodular Lattices , 2008, Formaliz. Math..

[4]  CHARACTERIZATIONS OF PARTITION LATTICES , 1994 .

[5]  George Grätzer,et al.  On the lattice of subalgebras of a Boolean algebra , 1972 .

[6]  Martin Aigner,et al.  Uniformität des Verbandes der Partitionen , 1974 .

[7]  Stanley P. Gudder Partial algebraic structures associated with orthomodular posets. , 1972 .

[8]  P. A. Firby Lattices and Compactifications, III , 1973 .

[9]  E. R. Emmet,et al.  Handbook of logic , 1966 .

[10]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[11]  Oystein Ore,et al.  Theory of equivalence relations , 1942 .

[12]  Chris Heunen,et al.  Noncommutativity as a Colimit , 2010, Appl. Categorical Struct..

[13]  R. I. G. Hughes,et al.  Semantic alternatives in partial Boolean quantum logic , 1985, J. Philos. Log..

[14]  Kim G. Larsen,et al.  Stone Duality for Markov Processes , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[15]  Dana S. Scott,et al.  Some Domain Theory and Denotational Semantics in Coq , 2009, TPHOLs.

[16]  F. Haimo Some limits of Boolean algebras , 1951 .

[17]  John Harding,et al.  Abelian subalgebras and the Jordan structure of a von Neumann algebra , 2010, 1009.4945.

[18]  David Sachs Partition and modulated lattices. , 1961 .

[19]  Rui Soares Barbosa,et al.  Unsharp Values, Domains and Topoi , 2012 .

[20]  James Laird Locally Boolean domains , 2005, Theor. Comput. Sci..

[21]  P. D. Finch On the Structure of Quantum Logic , 1969, J. Symb. Log..

[22]  A. Jung,et al.  Cartesian closed categories of domains , 1989 .

[23]  Sabine Koppelberg,et al.  Handbook of Boolean Algebras , 1989 .

[24]  Bas Spitters,et al.  A Topos for Algebraic Quantum Theory , 2007, 0709.4364.

[25]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[26]  Mirko Navara,et al.  Subalgebras of Orthomodular Lattices , 2010, Order.

[27]  Steven J. Vickers,et al.  Quantales, observational logic and process semantics , 1993, Mathematical Structures in Computer Science.

[28]  Sarah Cannon,et al.  The Spectral Presheaf of an Orthomodular Lattice Some steps towards generalized Stone duality , 2013 .

[29]  Chris Heunen,et al.  Characterizations of Categories of Commutative C*-Subalgebras , 2011, 1106.5942.