Trigonometric distance and proper motions of H2O maser bowshocks in AFGL 5142

We present the results of multi-epoch VLBI observations of water masers in the AGFL 5142 massive star forming region. We measure an annual parallax of $\pi=0.467 \pm 0.010$ mas, corresponding to a source distance of $D=2.14^{+0.051}_{-0.049}$ kpc. Proper motion and line of sight velocities reveal the 3D kinematics of masers in this region, most of which associate with millimeter sources from the literature. In particular we find remarkable bipolar bowshocks expanding from the most massive member, AFGL 5142 MM1, which are used to investigate the physical properties of its protostellar jet. We attempt to link the known outflows in this region to possible progenitors by considering a precessing jet scenario and we discuss the episodic nature of ejections in AFGL 5142.

[1]  C. Brogan,et al.  G11.92-0.61 MM1 : a Keplerian disc around a massive young proto-O star , 2016, 1608.05561.

[2]  Y. Contreras,et al.  A PROTOSTELLAR JET EMANATING FROM A HYPERCOMPACT H ii REGION , 2016, 1605.07687.

[3]  T. Nagayama,et al.  H2O masers in a jet-driven bow shock: Episodic ejection from a massive young stellar object , 2016, 1604.05682.

[4]  Qizhou Zhang,et al.  DISCOVERY OF AN EXTREMELY WIDE-ANGLE BIPOLAR OUTFLOW IN AFGL 5142 , 2016, 1604.03548.

[5]  Qizhou Zhang,et al.  A HOT AND MASSIVE ACCRETION DISK AROUND THE HIGH-MASS PROTOSTAR IRAS 20126+4104 , 2016, 1604.00523.

[6]  Investigating Particle Acceleration in Protostellar Jets: The Triple Radio Continuum Source in Serpens , 2015, 1512.02980.

[7]  H. Imai,et al.  A 'water spout' maser jet in S235AB-MIR , 2015, 1509.03110.

[8]  D. Hollenbach,et al.  INTERSTELLAR H2O MASERS FROM J SHOCKS , 2013, 1306.5276.

[9]  P. Hennebelle,et al.  EARLY STAGES OF CLUSTER FORMATION: FRAGMENTATION OF MASSIVE DENSE CORES DOWN TO ≲ 1000 AU , 2012, 1211.2666.

[10]  K. Menten,et al.  CLUSTERED STAR FORMATION AND OUTFLOWS IN AFGL 2591 , 2011, 1111.0843.

[11]  A. Whitworth,et al.  THE IMPORTANCE OF EPISODIC ACCRETION FOR LOW-MASS STAR FORMATION , 2011, 1103.1378.

[12]  K. Menten,et al.  Imaging the Ionized Disk of the High-Mass Protostar Orion I , 2007, 0704.2309.

[13]  Qizhou Zhang,et al.  Multiple Jets from the High-Mass (Proto)stellar Cluster AFGL 5142 , 2006, astro-ph/0612027.

[14]  G. Garay,et al.  Large Proper Motions in the Jet of the High-Mass YSO Cepheus A HW2 , 2006 .

[15]  L. Mundy,et al.  A Ballistic Bow Shock Model for Jet-driven Protostellar Outflow Shells , 2001, astro-ph/0104374.

[16]  Lee G. Mundy,et al.  Hydrodynamic Simulations of Jet- and Wind-driven Protostellar Outflows , 2000, astro-ph/0104373.

[17]  Noriyuki Kawaguchi,et al.  Dual-beam VLBI techniques for precision astrometry of the VERA project , 2000, Astronomical Telescopes and Instrumentation.

[18]  J. Bally,et al.  The Molecular Outflow and Possible Precessing Jet from the Massive Young Stellar Object IRAS 20126+4104 , 2000 .

[19]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[20]  M. Kaufman,et al.  Water Maser Emission from Magnetohydrodynamic Shock Waves , 1996 .

[21]  B. Reipurth,et al.  Large Proper Motions and Ejection of New Condensations in the HH 80-81 Thermal Radio Jet , 1995 .

[22]  P. Hartigan,et al.  Mass-loss rates, ionization fractions, shock velocities, and magnetic fields of stellar jets , 1994 .

[23]  W. Benz,et al.  Momentum Transfer by Astrophysical Jets , 1994, astro-ph/9404032.