Unified Treatment of Dynamical Processes on Generalized Networks: Higher-Order, Multilayer, and Temporal Interactions

When describing complex interconnected systems, one often has to go beyond the traditional network description to account for generalized interactions. Here, we establish a unified framework to optimally simplify the analysis of cluster synchronization patterns for a wide range of generalized networks, including hypergraphs, multilayer networks, and temporal networks. The framework is based on finding the finest simultaneous block diagonalization (SBD) of the matrices encoding the synchronization pattern and the interaction pattern. As an application, we use the SBD framework to characterize chimera states induced by nonpairwise interactions and by time-varying interactions. The unified framework established here can be extended to other dynamical processes and can facilitate the discovery of novel emergent phenomena in complex systems with generalized interactions.

[1]  P. S. Skardal,et al.  Bifurcation analysis and structural stability of simplicial oscillator populations , 2020 .

[2]  K. Murota,et al.  A numerical algorithm for block-diagonal decomposition of matrix *-algebras with general irreducible components , 2010 .

[3]  Leonie Neuhäuser,et al.  Multibody interactions and nonlinear consensus dynamics on networked systems. , 2019, Physical review. E.

[4]  Yamir Moreno,et al.  Phase transitions and stability of dynamical processes on hypergraphs , 2020, Communications Physics.

[5]  V. Latora,et al.  The Master Stability Function for Synchronization in Simplicial Complexes , 2020, 2004.03913.

[6]  Joseph D. Hart,et al.  Experiments with arbitrary networks in time-multiplexed delay systems. , 2017, Chaos.

[7]  Vito Latora,et al.  Collective Phenomena Emerging from the Interactions between Dynamical Processes in Multiplex Networks. , 2014, Physical review letters.

[8]  Conrado J. Pérez Vicente,et al.  Diffusion dynamics on multiplex networks , 2012, Physical review letters.

[9]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[10]  Adilson E. Motter,et al.  Identical synchronization of nonidentical oscillators: when only birds of different feathers flock together , 2017, 1712.03245.

[11]  G. St‐Onge,et al.  Master equation analysis of mesoscopic localization in contagion dynamics on higher-order networks. , 2020, Physical review. E.

[12]  D. Abrams,et al.  Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators , 2014, 1403.6204.

[13]  Yamir Moreno,et al.  Multilayer Networks in a Nutshell , 2018, Annual Review of Condensed Matter Physics.

[14]  Eckehard Schöll,et al.  Control of synchronization patterns in neural-like Boolean networks. , 2012, Physical review letters.

[15]  Joos Vandewalle,et al.  Cluster synchronization in oscillatory networks. , 2008, Chaos.

[16]  Igor Belykh,et al.  Synchronization in On-Off Stochastic Networks: Windows of Opportunity , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Vito Latora,et al.  Simplicial models of social contagion , 2018, Nature Communications.

[18]  Jean-Gabriel Young,et al.  Networks beyond pairwise interactions: structure and dynamics , 2020, ArXiv.

[19]  Timoteo Carletti,et al.  Dynamical systems on hypergraphs , 2020, Journal of Physics: Complexity.

[20]  Jure Leskovec,et al.  Higher-order organization of complex networks , 2016, Science.

[21]  Adilson E. Motter,et al.  Critical Switching in Globally Attractive Chimeras , 2019 .

[22]  Alex Arenas,et al.  Abrupt phase transition of epidemic spreading in simplicial complexes , 2020 .

[23]  Per Sebastian Skardal,et al.  Higher order interactions in complex networks of phase oscillators promote abrupt synchronization switching , 2019 .

[24]  Adilson E. Motter,et al.  Symmetry-Independent Stability Analysis of Synchronization Patterns , 2020, SIAM Rev..

[25]  Adilson E Motter,et al.  Stable Chimeras and Independently Synchronizable Clusters. , 2017, Physical review letters.

[26]  R. Reinhart,et al.  Working memory revived in older adults by synchronizing rhythmic brain circuits , 2019, Nature Neuroscience.

[27]  Z. Wang,et al.  The structure and dynamics of multilayer networks , 2014, Physics Reports.

[28]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[29]  Ginestra Bianconi,et al.  Explosive higher-order Kuramoto dynamics on simplicial complexes , 2019, Physical review letters.

[30]  Vito Latora,et al.  Remote synchronization reveals network symmetries and functional modules. , 2012, Physical review letters.

[31]  Federico Battiston,et al.  A multi-order Laplacian for synchronization in higher-order networks , 2020 .

[32]  Christian Kuehn,et al.  Coupled dynamics on hypergraphs: Master stability of steady states and synchronization. , 2020, Physical review. E.

[33]  Mason A. Porter,et al.  Author Correction: The physics of spreading processes in multilayer networks , 2016, 1604.02021.

[34]  Eckehard Schöll,et al.  Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators. , 2013, Physical review letters.

[35]  Liang Huang,et al.  Topological control of synchronous patterns in systems of networked chaotic oscillators , 2013 .

[36]  Timoteo Carletti,et al.  Random walks on hypergraphs , 2020, Physical review. E.

[37]  Jon M. Kleinberg,et al.  Simplicial closure and higher-order link prediction , 2018, Proceedings of the National Academy of Sciences.

[38]  Takuma Tanaka,et al.  Multistable attractors in a network of phase oscillators with three-body interactions. , 2011, Physical review letters.

[39]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[40]  O. Omel'chenko,et al.  The mathematics behind chimera states , 2018 .

[41]  Igor Belykh,et al.  Synchronization in Multilayer Networks: When Good Links Go Bad , 2019, SIAM J. Appl. Dyn. Syst..

[42]  Jure Leskovec,et al.  Motifs in Temporal Networks , 2016, WSDM.

[43]  Marcus Pivato,et al.  Symmetry Groupoids and Patterns of Synchrony in Coupled Cell Networks , 2003, SIAM J. Appl. Dyn. Syst..

[44]  Mathias Hudoba de Badyn,et al.  Exotic states in a simple network of nanoelectromechanical oscillators , 2019, Science.

[45]  Francesco Sorrentino,et al.  Synchronization of dynamical hypernetworks: dimensionality reduction through simultaneous block-diagonalization of matrices. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  P. Ashwin,et al.  Chaos in generically coupled phase oscillator networks with nonpairwise interactions. , 2016, Chaos.

[47]  Austin R. Benson,et al.  Random Walks on Simplicial Complexes and the normalized Hodge Laplacian , 2018, SIAM Rev..

[48]  Louis Pecora,et al.  Symmetries and cluster synchronization in multilayer networks , 2020, Nature Communications.

[49]  Kazuo Murota,et al.  Algorithm for Error-Controlled Simultaneous Block-Diagonalization of Matrices , 2011, SIAM J. Matrix Anal. Appl..

[50]  A. Arenas,et al.  Abrupt Desynchronization and Extensive Multistability in Globally Coupled Oscillator Simplexes. , 2019, Physical review letters.

[51]  Y.-Y. Liu,et al.  The fundamental advantages of temporal networks , 2016, Science.

[52]  Francesco Sorrentino,et al.  Cluster synchronization and isolated desynchronization in complex networks with symmetries , 2013, Nature Communications.

[53]  M Chavez,et al.  Synchronization in dynamical networks: evolution along commutative graphs. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Erik M. Bollt,et al.  Sufficient Conditions for Fast Switching Synchronization in Time-Varying Network Topologies , 2006, SIAM J. Appl. Dyn. Syst..

[55]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[56]  S. Strogatz Exploring complex networks , 2001, Nature.

[57]  Alain Barrat,et al.  Simplicial Activity Driven Model. , 2018, Physical review letters.

[58]  Frede Blaabjerg,et al.  Overview of Control and Grid Synchronization for Distributed Power Generation Systems , 2006, IEEE Transactions on Industrial Electronics.

[59]  Eckehard Schöll,et al.  Cluster and group synchronization in delay-coupled networks. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  A. Schnitzler,et al.  Normal and pathological oscillatory communication in the brain , 2005, Nature Reviews Neuroscience.

[61]  M. Hasler,et al.  Blinking model and synchronization in small-world networks with a time-varying coupling , 2004 .

[62]  Yamir Moreno,et al.  Social contagion models on hypergraphs , 2020, Physical Review Research.

[63]  R. E. Amritkar,et al.  Synchronized state of coupled dynamics on time-varying networks. , 2006, Chaos.

[64]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..