Sparse expanders have negative curvature

We prove that bounded-degree expanders with non-negative Ollivier-Ricci curvature do not exist, thereby solving a long-standing open problem suggested by Naor and Milman and publicized by Ollivier (2010). In fact, this remains true even if we allow for a vanishing proportion of large degrees, large eigenvalues, and negatively-curved edges. To establish this, we work directly at the level of Benjamini-Schramm limits, and exploit the entropic characterization of the Liouville property on stationary random graphs to show that non-negative curvature and spectral expansion are incompatible “at infinity”. We then transfer this result to finite graphs via local weak convergence. The same approach also applies to the Bacry-Emery curvature condition CD(0,∞), thereby settling a recent conjecture of Cushing, Liu and Peyerimhoff (2019).

[1]  M. Ledoux,et al.  Analysis and Geometry of Markov Diffusion Operators , 2013 .

[2]  Y. Ollivier A survey of Ricci curvature for metric spaces and Markov chains , 2010 .

[3]  J. Jost,et al.  Liouville property and non-negative Ollivier curvature on graphs. , 2019, 1903.10796.

[4]  Gábor Elek On the limit of large girth graph sequences , 2010, Comb..

[5]  Nicolas Curien,et al.  Ergodic theory on stationary random graphs , 2010, 1011.2526.

[6]  J. Michael Steele,et al.  The Objective Method: Probabilistic Combinatorial Optimization and Local Weak Convergence , 2004 .

[7]  Russell Lyons Asymptotic Enumeration of Spanning Trees , 2005, Comb. Probab. Comput..

[8]  D. Bakry Etude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée , 1987 .

[9]  Y. Ollivier Ricci curvature of metric spaces , 2007 .

[10]  D. Aldous,et al.  Processes on Unimodular Random Networks , 2006, math/0603062.

[11]  Florentin Münch Non-negative Ollivier curvature on graphs, reverse Poincaré inequality, Buser inequality, Liouville property, Harnack inequality and eigenvalue estimates , 2019, Journal de Mathématiques Pures et Appliquées.

[12]  Marc Lelarge,et al.  The rank of diluted random graphs , 2010, SODA '10.

[13]  Shiping Liu,et al.  Ollivier-Ricci Idleness Functions of Graphs , 2017, SIAM J. Discret. Math..

[14]  Ron Aharoni,et al.  Matchings in infinite graphs , 1988, J. Comb. Theory, Ser. B.

[15]  A. Avez Harmonic Functions on Groups , 1976 .

[16]  Mark Kempton,et al.  Large scale Ricci curvature on graphs , 2019, Calculus of Variations and Partial Differential Equations.

[17]  Venkat Anantharam,et al.  The densest subgraph problem in sparse random graphs , 2013, ArXiv.

[18]  Shiping Liu,et al.  Bakry–Émery Curvature Functions on Graphs , 2016, Canadian Journal of Mathematics.

[19]  Florentin Münch Li-Yau inequality under $CD(0,n)$ on graphs , 2019, 1909.10242.

[20]  Russell Lyons,et al.  Ergodic theory on Galton—Watson trees: speed of random walk and dimension of harmonic measure , 1995, Ergodic Theory and Dynamical Systems.

[21]  Y. Peres,et al.  Probability on Trees and Networks , 2017 .

[22]  James R. Lee,et al.  Transport-Entropy Inequalities and Curvature in Discrete-Space Markov Chains , 2016, 1604.06859.

[23]  B. Hua Liouville theorem for bounded harmonic functions on manifolds and graphs satisfying non-negative curvature dimension condition , 2017, Calculus of Variations and Partial Differential Equations.

[24]  P. Tetali,et al.  Discrete Curvature and Abelian Groups , 2015, Canadian Journal of Mathematics.

[25]  Russell Lyons,et al.  Sharp Bounds on Random Walk Eigenvalues via Spectral Embedding , 2012, ArXiv.

[26]  S. Yau,et al.  Ricci curvature of graphs , 2011 .

[27]  Y. Ollivier,et al.  CURVATURE, CONCENTRATION AND ERROR ESTIMATES FOR MARKOV CHAIN MONTE CARLO , 2009, 0904.1312.

[28]  Russell Lyons,et al.  Unimodular random trees , 2012, Ergodic Theory and Dynamical Systems.

[29]  Vadim A. Kaimanovich,et al.  Random Walks on Discrete Groups: Boundary and Entropy , 1983 .

[30]  Radoslaw K. Wojciechowski,et al.  Ollivier Ricci curvature for general graph Laplacians: Heat equation, Laplacian comparison, non-explosion and diameter bounds , 2017, Advances in Mathematics.

[31]  I. Benjamini,et al.  Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.

[32]  Y. Ollivier Ricci curvature of Markov chains on metric spaces , 2007, math/0701886.

[33]  I. Benjamini,et al.  Anchored expansion, speed and the Poisson–Voronoi tessellation in symmetric spaces , 2018, Annals of Probability.

[34]  C. Villani Topics in Optimal Transportation , 2003 .

[35]  Gady Kozma,et al.  Disorder, entropy and harmonic functions , 2011, 1111.4853.

[36]  Max Fathi,et al.  Curvature and transport inequalities for Markov chains in discrete spaces , 2015, 1509.07160.

[37]  Matias Carrasco Piaggio,et al.  Equivalence of zero entropy and the Liouville property for stationary random graphs , 2015, 1510.04244.

[38]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[39]  Martin E. Dyer,et al.  Path coupling without contraction , 2007, J. Discrete Algorithms.

[40]  Shiping Liu,et al.  The Graph Curvature Calculator and the Curvatures of Cubic Graphs , 2017, Experimental Mathematics.

[41]  J. Koolen,et al.  Rigidity of the Bonnet-Myers inequality for graphs with respect to Ollivier Ricci curvature , 2018, Advances in Mathematics.