MIRA: an effective imaging algorithm for optical interferometry

This paper presents MIRA, a Multi-aperture Image Reconstruction Algorithm, which has been specifically developed for image restoration from optical interferometric data. The sought image satisfies agreement with the input interferometric data and with some a priori image properties (positivity, normalization and regularization). The algorithm can cope with very limited amount of data; as an extreme case, MIRA is able to restore images without any Fourier phase information. This leads to the possibility to perform imaging with only 2 telescopes or when the phase closures are corrupted.

[1]  Guy Le Besnerais,et al.  Advanced Imaging Methods for Long-Baseline Optical Interferometry , 2008, IEEE Journal of Selected Topics in Signal Processing.

[2]  A Lannes Integer ambiguity resolution in phase closure imaging. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  Eric Thiébaut INTRODUCTION TOIMAGE RECONSTRUCTION AND INVERSE PROBLEMS , 2006 .

[4]  C. Haniff Least-squares Fourier phase estimation from the modulo 2π bispectrum phase , 1991 .

[5]  J. Skilling,et al.  Maximum entropy image reconstruction: general algorithm , 1984 .

[6]  Éric Thiébaut Reconstruction d'image en interférométrie optique , 2007 .

[7]  D. Titterington General structure of regularization procedures in image reconstruction , 1985 .

[8]  J. Högbom,et al.  APERTURE SYNTHESIS WITH A NON-REGULAR DISTRIBUTION OF INTERFEROMETER BASELINES. Commentary , 1974 .

[9]  S. Meimon,et al.  The limb-darkened Arcturus: imaging with the IOTA/IONIC interferometer , 2008 .

[10]  Gerd Weigelt,et al.  Iterative image reconstruction from the bispectrum , 1993 .

[11]  A. Readhead,et al.  Image Formation by Self-Calibration in Radio Astronomy , 1984 .

[12]  R. Narayan,et al.  Maximum Entropy Image Restoration in Astronomy , 1986 .

[13]  Hua Lee,et al.  Maximum Entropy and Bayesian Methods. , 1996 .

[14]  John D. Monnier,et al.  A Data Exchange Standard for Optical (Visible/IR) Interferometry , 2004, SPIE Astronomical Telescopes + Instrumentation.

[15]  W. D. Cotton,et al.  A method of mapping compact structure in radio sources using VLBI observations , 1979 .

[16]  Eric Anterrieu,et al.  CLEAN and WIPE , 1997 .

[17]  Keith Horne,et al.  Images of accretion discs – I. The eclipse mapping method , 1985 .

[18]  Weili Lin Imaging Concepts , 2005 .

[19]  Stephen F. Gull,et al.  Developments in Maximum Entropy Data Analysis , 1989 .

[20]  J. Giovannelli,et al.  Positive deconvolution for superimposed extended source and point sources , 2005, astro-ph/0507691.

[21]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[22]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[23]  Laurent M Mugnier,et al.  Reconstruction method for weak-phase optical interferometry. , 2005, Optics letters.

[24]  David F. Buscher Direct Maximum-Entropy Image Reconstruction from the Bispectrum , 1994 .

[25]  Eric Thiébaut INTRODUCTION TO IMAGE RECONSTRUCTION AND INVERSE PROBLEMS , .

[26]  A. Readhead,et al.  The mapping of compact radio sources from VLBI data. , 1978 .

[27]  Eric Thiebaut,et al.  Optimization issues in blind deconvolution algorithms , 2002, SPIE Astronomical Telescopes + Instrumentation.

[28]  Éric Thiébaut,et al.  Non-parametric reconstruction of distribution functions from observed galactic discs , 1998 .

[29]  T. Cornwell,et al.  A new method for making maps with unstable radio interferometers , 1981 .

[30]  Serge Meimon,et al.  Convex approximation to the likelihood criterion for aperture synthesis imaging. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[31]  J. Mariotti,et al.  Imaging with Amber/VLTI: the case of microjets , 2003 .

[32]  L. B. Lucy,et al.  Optimum strategies for inverse problems in statistical astronomy. , 1994 .