Effects of 2CL-20/HMX cocrystals on the thermal decomposition behavior and combustion properties of polyether solid propellants

[1]  V. P. Sinditskii,et al.  Thermal decomposition behavior of CL-20 co-crystals , 2020 .

[2]  Gen Tang,et al.  Differences of thermal decomposition behaviors and combustion properties between CL-20-based propellants and HMX-based solid propellants , 2019, Journal of Thermal Analysis and Calorimetry.

[3]  T. K. Goncharov,et al.  Combustion of CL-20 cocrystals , 2019, Combustion and Flame.

[4]  Pratima Kumar An overview on properties, thermal decomposition, and combustion behavior of ADN and ADN based solid propellants , 2018, Defence Technology.

[5]  A. Sikder,et al.  Studies on CL-20/HMX (2:1) Cocrystal: A New Preparation Method and Structural and Thermokinetic Analysis , 2018 .

[6]  Shiliang Huang,et al.  Transitions from Separately Crystallized CL-20 and HMX to CL-20/HMX Cocrystal Based on Solvent Media , 2018 .

[7]  Gen Tang,et al.  Crystal transition behaviors of CL-20 in polyether solid propellants plasticized by nitrate esters containing both HMX and CL-20 , 2017 .

[8]  D. Trache,et al.  Recent advances in new oxidizers for solid rocket propulsion , 2017 .

[9]  J. Essel,et al.  Influence of Particle Size on the Combustion of CL‐20/HTPB Propellants , 2017 .

[10]  Chaoyang Zhang,et al.  Initial Decay Mechanism of the Heated CL-20/HMX Cocrystal: A Case of the Cocrystal Mediating the Thermal Stability of the Two Pure Components , 2017 .

[11]  A. Venkataraman,et al.  An overview on importance, synthetic strategies and studies of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW) , 2016 .

[12]  F. Zhao,et al.  Research on the thermal decomposition behavior of NEPE propellant containing CL-20 , 2016 .

[13]  J. Shreeve,et al.  Time for pairing: cocrystals as advanced energetic materials , 2016 .

[14]  Y. Bayat,et al.  Synthesis of CL‐20 by a Greener Method Using Nitroguanidine/HNO3 , 2016 .

[15]  M. Burghammer,et al.  Smart Energetic Nanosized Co-Crystals: Exploring Fast Structure Formation and Decomposition , 2016 .

[16]  V. Stepanov,et al.  Investigation of HMX‐Based Nanocomposites , 2015 .

[17]  V. Young,et al.  Using solvent effects to guide the design of a CL-20 cocrystal , 2015 .

[18]  D. Spitzer,et al.  Continuous engineering of nano-cocrystals for medical and energetic applications , 2014, Scientific Reports.

[19]  D. Ende,et al.  Preparation of an Energetic-Energetic Cocrystal using Resonant Acoustic Mixing , 2014 .

[20]  孙婷,et al.  CL-20/HMX共晶及其为基PBX界面作用和力学性能的MD模拟研究 , 2014 .

[21]  Hongzhen Li,et al.  Toward low-sensitive and high-energetic co-crystal II: structural, electronic and energetic features of CL-20 polymorphs and the observed CL-20-based energetic–energetic co-crystals , 2014 .

[22]  Hongzhen Li,et al.  Toward low-sensitive and high-energetic cocrystal I: evaluation of the power and the safety of observed energetic cocrystals , 2013 .

[23]  Philip F. Pagoria,et al.  High Power Explosive with Good Sensitivity: A 2:1 Cocrystal of CL-20:HMX , 2012 .

[24]  Iain D. H. Oswald,et al.  Crystal engineering of energetic materials: Co-crystals of CL-20 , 2012 .

[25]  V. A. Babuk,et al.  Burning Mechanism of Aluminized Solid Rocket Propellants Based on Energetic Binders , 2005 .

[26]  Ruiping Wang,et al.  Thermal study of HNIW (CL-20) , 2005 .

[27]  U. R. Nair,et al.  Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based formulations (review) , 2005 .

[28]  Girish M. Gore,et al.  Studies on CL-20: The most powerful high energy material , 2003 .

[29]  N. Chukanov,et al.  Comparative Investigation of Thermal Decomposition of Various Modifications of Hexanitrohexaazaisowurtzitane (CL‐20) , 2000 .

[30]  D. M. Hoffman,et al.  CL‐20 performance exceeds that of HMX and its sensitivity is moderate , 1997 .

[31]  S. Suzuki,et al.  Combustion efficiency of aluminized propellant , 1989 .

[32]  F. Zhao,et al.  Application and Properties of CL‐20/HMX Cocrystal in Composite Modified Double Base Propellants , 2019, Propellants, Explosives, Pyrotechnics.

[33]  A. Elbeih,et al.  Path to ε-HNIW with Reduced Impact Sensitivity , 2011 .

[34]  Z. Feng-qi Investigation on Thermal Decomposition of Mixed Systems of AP with RDX and HMX by DSC-TG-FTIR , 2007 .