Blind identification of under-determined mixtures based on the characteristic function

Linear mixtures of independent random variables (the so-called sources) are sometimes referred to as under-determined mixtures (UDM) when the number of sources exceeds the dimension of the observation space. The algorithms proposed are able to identify algebraically a UDM using the second characteristic function of the observations. With only two sensors, the first algorithm only needs an SVD. With a larger number of sensors, the second algorithm executes an ALS. The joint use of statistics of different orders is possible, and an LS solution can be computed.

[1]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[2]  P. Comon,et al.  Blind Identification of Overcomplete MixturEs of sources (BIOME) , 2004 .

[3]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[4]  Pierre Comon Independent component analysis - a new concept? signal processing , 1994 .

[5]  Christian Jutten,et al.  On underdetermined source separation , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[6]  Pierre Comon,et al.  Blind identification and source separation in 2×3 under-determined mixtures , 2004, IEEE Trans. Signal Process..

[7]  Visa Koivunen,et al.  Identifiability, separability, and uniqueness of linear ICA models , 2004, IEEE Signal Processing Letters.

[8]  I. Shafarevich Basic algebraic geometry , 1974 .

[9]  Jean-Francois Cardoso,et al.  Super-symmetric decomposition of the fourth-order cumulant tensor. Blind identification of more sources than sensors , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[10]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[11]  Tariq S. Durrani,et al.  Mathematics in Signal Processing , 2009 .

[12]  Anisse Taleb,et al.  An algorithm for the blind identification of N independent signals with 2 sensors , 2001, Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467).

[13]  G. Darmois,et al.  Analyse générale des liaisons stochastiques: etude particulière de l'analyse factorielle linéaire , 1953 .

[14]  J. Ord,et al.  Characterization Problems in Mathematical Statistics , 1975 .

[15]  Rasmus Bro,et al.  Improving the speed of multi-way algorithms:: Part I. Tucker3 , 1998 .

[16]  N. Sidiropoulos,et al.  On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .

[17]  P. Laguna,et al.  Signal Processing , 2002, Yearbook of Medical Informatics.

[18]  Jean-Franois Cardoso High-Order Contrasts for Independent Component Analysis , 1999, Neural Computation.

[19]  David E. Booth,et al.  Multi-Way Analysis: Applications in the Chemical Sciences , 2005, Technometrics.

[20]  Rasmus Bro,et al.  Improving the speed of multiway algorithms: Part II: Compression , 1998 .

[21]  S. Leurgans,et al.  A Decomposition for Three-Way Arrays , 1993, SIAM J. Matrix Anal. Appl..

[22]  P. Comon Independent Component Analysis , 1992 .

[23]  Terrence J. Sejnowski,et al.  Blind source separation of more sources than mixtures using overcomplete representations , 1999, IEEE Signal Processing Letters.

[24]  Laurent Albera,et al.  Fourth order blind identification of underdetermined mixtures of sources (FOBIUM) , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[25]  Arie Yeredor,et al.  Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation , 2002, IEEE Trans. Signal Process..

[26]  Rasmus Bro,et al.  Multi-way Analysis with Applications in the Chemical Sciences , 2004 .

[27]  Nikos D. Sidiropoulos,et al.  Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..

[28]  Arie Yeredor,et al.  Blind source separation via the second characteristic function , 2000, Signal Process..

[29]  B. De Moor,et al.  ICA algorithms for 3 sources and 2 sensors , 1999, Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics. SPW-HOS '99.

[30]  Mike E. Davies,et al.  Tensor Decompositions, State of the Art and Applications , 2009, 0905.0454.

[31]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[32]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[33]  V. Koivunen,et al.  Identifiability and Separability of Linear Ica Models Revisited , 2003 .

[34]  Pierre Comon,et al.  Blind Identification of Complex Under-Determined Mixtures , 2004, ICA.

[35]  Pierre Comon,et al.  Enhanced Line Search: A Novel Method to Accelerate PARAFAC , 2008, SIAM J. Matrix Anal. Appl..

[36]  Laurent Albera,et al.  Fourth-order blind identification of underdetermined mixtures of sources (FOBIUM) , 2005, IEEE Transactions on Signal Processing.

[37]  P. Comon CANONICAL TENSOR DECOMPOSITIONS , 2004 .