Analysis of copper surface features obtained using TEA CO2 laser at reduced air pressure

[1]  J. Myers,et al.  Vapor Pressure of Liquid Copper. , 1965 .

[2]  Surface roughness effect on optical absorptivity of metals , 1982 .

[3]  N. I. Chapliev,et al.  On the influence of surface condition on air plasma formation near metals irradiated by microsecond TEA CO2 laser pulses , 1984 .

[4]  N. I. Chapliev,et al.  Threshold conditions for the air plasma initiation near solid surfaces under the action of powerful pulsed CO2 laser radiation , 1985 .

[5]  B Yaakobi,et al.  Editor: I. I. Sobelman. X-Ray Plasma Spectroscopy and the Properties of Multi-Charged Ions (Volume 179, Proceedings of the Lebedev Physics Institute), (NOVA Science Publishers, Inc., New York, 1988) 256 pages, $87.00 , 1989 .

[6]  A. Prokhorov,et al.  Laser Heating of Metals , 1990 .

[7]  G. Daurelio,et al.  EXPERIMENTAL TECHNIQUES TO CUT AND WELD COPPER BY LASER - A REVIEW , 1991 .

[8]  J. Hermann,et al.  Spectroscopic observation of the plasma produced by a CO2 laser beam interacting with titanium target under helium and/or argon atmosphere , 1992 .

[9]  I. Mihailescu,et al.  Multistage plasma initiation process by pulsed CO2 laser irradiation of a Ti sample in an ambient gas (He, Ar, or N2) , 1993 .

[10]  M. A. Shannon,et al.  Plasma shielding during picosecond laser sampling of solid materials by ablation in He versus Ar atmosphere , 1993 .

[11]  C. L. Liu,et al.  Modeling of dynamical processes in laser ablation , 1995 .

[12]  J. Laserna,et al.  Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation , 1998 .

[13]  D. C. Emmony,et al.  TEA-CO2 laser surface processing of corroded metals , 1999 .

[14]  M. Tjia,et al.  Comprehensive study on the pressure dependence of shock wave plasma generation under TEA CO2 laser bombardment on metal sample , 2001 .

[15]  K. Chen,et al.  Modelling and Analysis of UV Laser Micromachining of Copper , 2001 .

[16]  R. Singh,et al.  Laser-induced explosive boiling during nanosecond laser ablation of silicon , 2002 .

[17]  Milan S. Trtica,et al.  Efficient small-scale TEA CO2 laser for material surface modification , 2002, Atomic and Molecular Pulsed Lasers.

[18]  Marvin J. Weber,et al.  Handbook of Optical Materials , 2002 .

[19]  A. Bogaerts,et al.  Laser ablation for analytical sampling: what can we learn from modeling? , 2003 .

[20]  Changsheng Xie,et al.  UV Nd:YAG laser ablation of copper: Chemical states in both crater and halo studied by XPS , 2003 .

[21]  A. Kaplan,et al.  Mathematical Modelling of Laser Absorption Mechanisms in Metals: A Review , 2003 .

[22]  A. C. van Popta,et al.  Single and multiple shot near-infrared femtosecond laser pulse ablation thresholds of copper , 2005 .

[23]  K. Yung,et al.  Copper Direct Drilling With TEA$hbox CO_2$Laser in Manufacture of High-Density Interconnection Printed Circuit Board , 2006, IEEE Transactions on Electronics Packaging Manufacturing.

[24]  A. Kaplan,et al.  A ray-tracing analysis of the absorption of light by smooth and rough metal surfaces , 2007 .

[25]  Russel H. Jones,et al.  Environmental Effects on Engineered Materials , 2007 .

[26]  Improving copper electrodeposition in the microelectronics industry , 2008, ECTC 2008.

[27]  D. W. Henderson,et al.  Improving Copper Electrodeposition in the Microelectronics Industry , 2008, IEEE Transactions on Components and Packaging Technologies.

[28]  A. V. van Duin,et al.  Influence of surface orientation and defects on early-stage oxidation and ultrathin oxide growth on pure copper , 2011 .

[29]  J. Stašić,et al.  Superficial changes on the Inconel 600 superalloy by picosecond Nd:YAG laser operating at 1064, 532, and 266 nm: Comparative study , 2012 .

[30]  Guangwen Zhou,et al.  Enhanced CuO Nanowire Formation by Thermal Oxidation of Roughened Copper , 2012 .

[31]  D. Batani,et al.  Surface modification of copper using high intensity, 1015 W/cm2, femtosecond laser in vacuum , 2012 .