Comparing the statistics of interstellar turbulence in simulations and observations - Solenoidal versus compressive turbulence forcing

Context. Molecular clouds (MCs) exhibit supersonic turbulent velocity and density fluctuations on virtually all scales observed by modern telescopes. The origin and structural characteristics of this turbulence are, however, still poorly understood. Aims. To shed light on this subject, we study two extreme cases of turbulence forcing in numerical experiments: solenoidal (divergence-free) forcing, and compressive (curl-free) forcing. We compare our results to observational data reported in the literature. Methods. We solve the equations of isothermal hydrodynamics on periodic uniform grids with up to 1024 3 grid points. We compare results obtained with five di! erent analysis techniques to observational data: density probability distribution functions (PDFs), centroid velocity increments, principal component analyses, Fourier spectra and " -variances. Results. Using Fourier spectra and " -variance analyses, we find that both compressive and solenoidal forcings yield velocity dispersion‐size relations consistent with observations and independent numerical simulations. Compressive forcing yields stronger compression and rarefaction at the same RMS Mach number, resulting in roughly three times larger dispersions of volumetric and column density PDFs. Comparing these results with the column density PDFs obtained in the Perseus MC indicates the presence of a mainly compressive forcing agent within the Shell region investigated by Goodman and coworkers. The PDFs of both volumetric and column densities are typically close to log-normal distributions, but they nevertheless exhibit non-Gaussian higher-order moments (skewness and kurtosis) caused by intermittent fluctuations. We compare intermittency statistics of centroid velocity increments with observational studies by Hily-Blant et al., showing that the turbulence statistics of solenoidal forcing agree well with the statistics measured in the Polaris Flare. Furthermore, we compare results of principal component analysis with observational studies by Heyer et al., showing that G216-2.5 and most of the Rosette MC is in very good agreement with the statistics obtained in solenoidal forcing. On the other hand, the interior of an ionising shell within the Rosette MC displays clear signatures of compressive turbulence forcing. Additionally, we find a weak correlation between density and Mach number, such that the local Mach number decreases with increasing density on average. We speculate that this may naturally explain the observed transonic velocity dispersions typically measured for prestellar cores, if these cores formed close to the sonic scale in a supersonic turbulent medium. Conclusions. We conclude that both solenoidal and compressive forcings are compatible with observations. Depending on the subregion, observational data exhibit statistical signatures obtained for both solenoidal and compressive turbulence forcings, with compressive forcing primarily occurring in swept-up shells.

[1]  L. Hartmann,et al.  The Birth of Molecular Clouds: Formation of Atomic Precursors in Colliding Flows , 2006, astro-ph/0605435.

[2]  A. Goodman,et al.  TMC-1C: An Accreting Starless Core , 2007, 0706.4115.

[3]  C. Brunt,et al.  Interstellar Turbulence. II. Energy Spectra of Molecular Regions in the Outer Galaxy , 2001, astro-ph/0110155.

[4]  S. Boldyrev Kolmogorov-Burgers Model for Star-forming Turbulence , 2001, astro-ph/0108300.

[5]  M. Norman,et al.  The Statistics of Supersonic Isothermal Turbulence , 2007, 0704.3851.

[6]  France.,et al.  Molecular Cloud Evolution. I. Molecular Cloud and Thin Cold Neutral Medium Sheet Formation , 2005, astro-ph/0509127.

[7]  S. Glover,et al.  Simulating the Formation of Molecular Clouds. I. Slow Formation by Gravitational Collapse from Static Initial Conditions , 2006, astro-ph/0605120.

[8]  P. Woodward,et al.  Synthesized spectra of turbulent clouds , 1994 .

[9]  R. Jimenez,et al.  Structure function scaling in compressible super-Alfvénic MHD turbulence. , 2003, Physical Review Letters.

[10]  Richard M. Crutcher,et al.  TESTING MAGNETIC STAR FORMATION THEORY , 2008, 0807.2862.

[11]  R. Klessen,et al.  Modelling CO formation in the turbulent interstellar medium , 2009, 0907.4081.

[12]  A. Goodman,et al.  THE “TRUE” COLUMN DENSITY DISTRIBUTION IN STAR-FORMING MOLECULAR CLOUDS , 2008, 0806.3441.

[13]  Dissipative structures of diffuse molecular gas - III. Small-scale intermittency of intense velocity-shears , 2008, 0802.0758.

[14]  Succi,et al.  Extended self-similarity in turbulent flows. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  E. Feigelson,et al.  A Chandra Study of the Rosette Star-forming Complex. I. The Stellar Population and Structure of the Young Open Cluster NGC 2244 , 2007, 0711.2024.

[16]  A. Azzalini A class of distributions which includes the normal ones , 1985 .

[17]  P. Hennebelle,et al.  ANALYTICAL THEORY FOR THE INITIAL MASS FUNCTION. II. PROPERTIES OF THE FLOW , 2009, 0907.2765.

[18]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[19]  R. Klessen,et al.  MODELING COLLAPSE AND ACCRETION IN TURBULENT GAS CLOUDS: IMPLEMENTATION AND COMPARISON OF SINK PARTICLES IN AMR AND SPH , 2010, 1001.4456.

[20]  J. Kainulainen Probing the Evolution of Molecular Cloud Structure , 2010 .

[21]  Richard B. Larson,et al.  Numerical Calculations of the Dynamics of a Collapsing Proto-Star , 1969 .

[22]  Paul R. Woodward,et al.  Kolmogorov‐like spectra in decaying three‐dimensional supersonic flows , 1994 .

[23]  K. Tassis The star formation law in a multifractal ISM , 2007, 0709.1474.

[24]  R. Klessen,et al.  The Density Probability Distribution in Compressible Isothermal Turbulence: Solenoidal versus Compressive Forcing , 2008, 0808.0605.

[25]  Daniel J. Price,et al.  A comparison between grid and particle methods on the statistics of driven, supersonic, isothermal turbulence , 2010, 1004.1446.

[26]  Javier Jiménez,et al.  Geometry and clustering of intense structures in isotropic turbulence , 2004, Journal of Fluid Mechanics.

[27]  Daniel J. Price,et al.  A method for reconstructing the variance of a 3D physical field from 2D observations: application to turbulence in the interstellar medium , 2010, 1001.1046.

[28]  Ralf Klessen,et al.  Clump morphology and evolution in MHD simulations of molecular cloud formation , 2008, 0808.0986.

[29]  R. Klessen,et al.  Turbulent mixing in the interstellar medium: an application for Lagrangian tracer particles , 2008, 0805.0196.

[30]  F. Anselmet,et al.  High-order velocity structure functions in turbulent shear flows , 1984, Journal of Fluid Mechanics.

[31]  A. Goodman,et al.  CO Isotopologues in the Perseus Molecular Cloud Complex: the X-factor and Regional Variations , 2008, 0802.0708.

[32]  S. Glover,et al.  Simulating the Formation of Molecular Clouds. II. Rapid Formation from Turbulent Initial Conditions , 2006, astro-ph/0605121.

[33]  C. Lada,et al.  Sequential formation of subgroups in OB associations , 1977 .

[34]  M. Penston Dynamics of Self-Gravitating Gaseous Spheres—III: Analytical Results in the Free-fall of Isothermal Cases , 1969 .

[35]  M. Lombardi,et al.  The Nature of the Dense Core Population in the Pipe Nebula: Thermal Cores Under Pressure , 2007, 0709.1164.

[36]  The COMPLETE Nature of the Warm Dust Shell in Perseus , 2006, astro-ph/0601692.

[37]  Jongsoo Kim,et al.  Core Mass Function: The Role of Gravity , 2008, 0801.2257.

[38]  She,et al.  Universal scaling laws in fully developed turbulence. , 1994, Physical review letters.

[39]  E. Ostriker,et al.  Dissipation in Compressible Magnetohydrodynamic Turbulence , 1998, astro-ph/9809357.

[40]  D. Johnstone,et al.  Dynamics of Dense Cores in the Perseus Molecular Cloud , 2007, 0707.2769.

[41]  D. Breitschwerdt,et al.  What Physical Processes Drive the Interstellar Medium in the Local Bubble? , 2009 .

[42]  T. Passot,et al.  Density probability distribution in one-dimensional polytropic gas dynamics , 1998, physics/9802019.

[43]  I. A. Bonnell,et al.  Modelling accretion in protobinary systems , 1995 .

[44]  R. Grauer,et al.  Local turbulence simulations for the multiphase ISM , 2008, 0901.4495.

[45]  N. Haugen,et al.  Bottleneck effect in three-dimensional turbulence simulations. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  T. Henning,et al.  Probing the evolution of molecular cloud structure: From quiescence to birth , 2009, 0911.5648.

[47]  P. Hennebelle,et al.  On the structure of the turbulent interstellar clouds . Influence of the equation of state on the dynamics of 3D compressible flows , 2009, 0911.0748.

[48]  N. Peretto,et al.  The initial conditions of star formation in the Ophiuchus main cloud: Kinematics of the protocluster condensations , , 2007, 0706.1535.

[49]  E. Baron,et al.  A 3D radiative transfer framework: IV. spherical & cylindrical coordinate systems , 2009, 0903.1949.

[50]  M. Juvela,et al.  The Power Spectrum of Supersonic Turbulence in Perseus , 2006, astro-ph/0611248.

[51]  William H. Press,et al.  Numerical recipes , 1990 .

[52]  Coleman Krawczyk,et al.  RE-EXAMINING LARSON'S SCALING RELATIONSHIPS IN GALACTIC MOLECULAR CLOUDS , 2008, 0809.1397.

[53]  V. Ossenkopf,et al.  Structure analysis of interstellar clouds - I. Improving the Delta-variance method , 2008, 0804.4649.

[54]  J. Stone,et al.  DISSIPATION AND HEATING IN SUPERSONIC HYDRODYNAMIC AND MHD TURBULENCE , 2008, 0809.4005.

[55]  C. Brunt,et al.  Turbulent Driving Scales in Molecular Clouds , 2009, 0910.0398.

[56]  Enrico Camporeale,et al.  Numerical modeling of space plasma flows , 2009 .

[57]  A. Kravtsov On the Origin of the Global Schmidt Law of Star Formation , 2003, astro-ph/0303240.

[58]  Michael L. Norman,et al.  The Formation of Self-Gravitating Cores in Turbulent Magnetized Clouds , 2003, astro-ph/0312622.

[59]  Christopher F. McKee,et al.  A General Theory of Turbulence-regulated Star Formation, from Spirals to Ultraluminous Infrared Galaxies , 2005, astro-ph/0505177.

[60]  Two Regimes of Turbulent Fragmentation and the Stellar Initial Mass Function from Primordial to Present-Day Star Formation , 2007, astro-ph/0701795.

[61]  A. Goodman,et al.  Coherence in Dense Cores. II. The Transition to Coherence , 1998 .

[62]  G. Kowal,et al.  Density Fluctuations in MHD Turbulence: Spectra, Intermittency, and Topology , 2006, astro-ph/0608051.

[63]  E. Feigelson,et al.  A CHANDRA STUDY OF THE ROSETTE STAR-FORMING COMPLEX. II. CLUSTERS IN THE ROSETTE MOLECULAR CLOUD , 2009, 0903.5493.

[64]  U. Texas,et al.  Interstellar Turbulence II: Implications and Effects , 2004, astro-ph/0404452.

[65]  A. Lazarian,et al.  Statistics of Velocity from Spectral Data: Modified Velocity Centroids , 2003, astro-ph/0304007.

[66]  James M. Stone,et al.  Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.

[67]  C. Brunt,et al.  Modification of Projected Velocity Power Spectra by Density Inhomogeneities in Compressible Supersonic Turbulence , 2003, astro-ph/0311461.

[68]  P. Padoan,et al.  The Stellar Initial Mass Function from Turbulent Fragmentation , 2000, astro-ph/0011465.

[69]  James M. Stone,et al.  Kinetic and Structural Evolution of Self-gravitating, Magnetized Clouds: 2.5-Dimensional Simulations of Decaying Turbulence , 1998, astro-ph/9810321.

[70]  E. Ostriker,et al.  Magnetically Aligned Velocity Anisotropy in the Taurus Molecular Cloud , 2008, 0802.2084.

[71]  Embedding Lagrangian Sink Particles in Eulerian Grids , 2003, astro-ph/0312612.

[72]  R. Klessen,et al.  A Holistic Scenario of Turbulent Molecular Cloud Evolution and Control of the Star Formation Efficiency: First Tests , 2003, astro-ph/0301546.

[73]  Sebastian Kern,et al.  Numerical simulations of compressively driven interstellar turbulence. I. Isothermal gas , 2008, 0809.1321.

[74]  Mika Juvela,et al.  The Super-Alfvénic Model of Molecular Clouds: Predictions for Zeeman Splitting Measurements , 2008, 0806.3854.

[75]  Statistical Properties of Line Centroid Velocity Increments in the ρ Ophiuchi Cloud , 1998 .

[76]  Structure Function Scaling in the Taurus and Perseus Molecular Cloud Complexes , 2002, astro-ph/0207568.

[77]  DENSE CORES IN PERSEUS: THE INFLUENCE OF STELLAR CONTENT AND CLUSTER ENVIRONMENT , 2009, 0902.0536.

[78]  The Energy Dissipation Rate of Supersonic, Magnetohydrodynamic Turbulence in Molecular Clouds , 1998, astro-ph/9809177.

[79]  R. Klessen,et al.  Quiescent and Coherent Cores from Gravoturbulent Fragmentation , 2003, astro-ph/0306055.

[80]  P. Myers Dense cores in dark clouds. III. Subsonic turbulence. , 1983 .

[81]  V. Ossenkopf,et al.  Structure analysis of interstellar clouds - II. Applying the Delta-variance method to interstellar turbulence , 2008, 0804.4877.

[82]  Velocity field statistics in star-forming regions. I. Centroid velocity observations , 1998, astro-ph/9810427.

[83]  D. Balsara,et al.  The Distribution of Pressures in a Supernova-Driven Interstellar Medium , 2001, astro-ph/0106509.

[84]  B. Elmegreen Variations in Stellar Clustering with Environment: Dispersed Star Formation and the Origin of Faint Fuzzies , 2007, 0710.5788.

[85]  F. Bensch,et al.  Quantification of molecular cloud structure using the ∆ -variance , 2000 .

[86]  Dynamic Cores in Hydrostatic Disguise , 2003, astro-ph/0304008.

[87]  F. Bensch,et al.  Quantification of molecular cloud structure using the Delta -variance , 2001 .

[88]  P. Myers,et al.  A survey for dense cores in dark clouds , 1989 .

[89]  R. Klessen,et al.  From the warm magnetized atomic medium to molecular clouds , 2008, 0805.1366.

[90]  E. Pérez,et al.  The Fractal Dimension of Projected Clouds , 2005, astro-ph/0501573.

[91]  A. Vincent,et al.  The spatial structure and statistical properties of homogeneous turbulence , 1991, Journal of Fluid Mechanics.

[92]  Lawrence Livermore National Lab.,et al.  Driven and Decaying Turbulence Simulations of Low-Mass Star Formation: From Clumps to Cores to Protostars , 2008, 0806.1045.

[93]  E. Vázquez-Semadeni Hierarchical Structure in Nearly Pressureless Flows as a Consequence of Self-similar Statistics , 1994 .

[94]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[95]  Arrow,et al.  The Physics of Fluids , 1958, Nature.

[96]  H. Rix,et al.  WHAT IS DRIVING THE H i VELOCITY DISPERSION? , 2009, 0903.0183.

[97]  A. Tielens,et al.  The neutral atomic phases of the interstellar medium , 1995 .

[98]  E. Ostriker,et al.  Theory of Star Formation , 2007, 0707.3514.

[99]  Stanislav Boldyrev,et al.  Scaling Relations of Supersonic Turbulence in Star-forming Molecular Clouds , 2001, astro-ph/0111345.

[100]  Andreas Burkert,et al.  Kinetic Energy Decay Rates of Supersonic and Super-Alfvénic Turbulence in Star-Forming Clouds , 1998 .

[101]  C. McKee,et al.  THE STAR FORMATION LAW IN ATOMIC AND MOLECULAR GAS , 2009, 0904.0009.

[102]  V. Ossenkopf,et al.  Turbulent velocity structure in molecular clouds , 2000, astro-ph/0012247.

[103]  E. Baron,et al.  A 3D radiative transfer framework: V. Homologous Flows , 2009, 0903.2486.

[104]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[105]  B. Jones,et al.  The universality of the stellar initial mass function , 1997 .

[106]  R. Larson Thermal physics, cloud geometry and the stellar initial mass function , 2005 .

[107]  Daniel J. Price,et al.  Algorithmic comparisons of decaying, isothermal, supersonic turbulence , 2008, 0810.4599.

[108]  P. Padoan,et al.  THE STAR FORMATION RATE OF SUPERSONIC MAGNETOHYDRODYNAMIC TURBULENCE , 2009, 0907.0248.

[109]  B. Elmegreen Star Formation from Galaxies to Globules , 2001, astro-ph/0207114.

[110]  Porter,et al.  Three-dimensional supersonic homogeneous turbulence: A numerical study. , 1992, Physical review letters.

[111]  The Stellar Mass Spectrum from Non-Isothermal Gravoturbulent Fragmentation , 2004, astro-ph/0410371.

[112]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[113]  Axel Brandenburg,et al.  Inertial range scaling in numerical turbulence with hyperviscosity. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[114]  J. Francesco,et al.  THE INITIAL CONDITIONS OF CLUSTERED STAR FORMATION. I. NH3 OBSERVATIONS OF DENSE CORES IN OPHIUCHUS , 2009, 0903.0690.

[115]  J. Pety,et al.  Statistical Properties of Line Centroid Velocities and Centroid Velocity Increments in Compressible Turbulence , 1996 .

[116]  Hydrodynamical simulations of the decay of high-speed molecular turbulence – II. Divergence from isothermality , 2005, astro-ph/0504504.

[117]  T. Henning,et al.  Multiple low-turbulence starless cores associated with intermediate- to high-mass star formation , 2009, 0907.4565.

[118]  P. Padoan,et al.  Interstellar Turbulence: The Density PDFs of Supersonic Random Flows , 1999 .

[119]  G. Kowal,et al.  DENSITY STUDIES OF MHD INTERSTELLAR TURBULENCE: STATISTICAL MOMENTS, CORRELATIONS AND BISPECTRUM , 2008, 0811.0822.

[120]  Interstellar cloud structure: the statistics of centroid velocities , 2006, astro-ph/0602265.

[121]  Jongsoo Kim,et al.  The Lifetimes and Evolution of Molecular Cloud Cores , 2005 .

[122]  Turbulence in Molecular Clouds , 1995, astro-ph/9501032.

[123]  Mordecai-Mark Mac Low,et al.  The Formation of Stellar Clusters in Turbulent Molecular Clouds: Effects of the Equation of State , 2002, astro-ph/0210479.

[124]  Volker Ossenkopf,et al.  Statistics of velocity centroids: effects of density–velocity correlations and non‐Gaussianity , 2007 .

[125]  Stephen B. Pope,et al.  An examination of forcing in direct numerical simulations of turbulence , 1988 .

[126]  M. Heyer,et al.  Application of Principal Component Analysis to Large-Scale Spectral Line Imaging Studies of the Interstellar Medium , 1997 .

[127]  Wolfram Schmidt,et al.  THE FRACTAL DENSITY STRUCTURE IN SUPERSONIC ISOTHERMAL TURBULENCE: SOLENOIDAL VERSUS COMPRESSIVE ENERGY INJECTION , 2007, 0710.1359.

[128]  C. Brunt,et al.  The Universality of Turbulence in Galactic Molecular Clouds , 2004, astro-ph/0409420.

[129]  M. Min,et al.  Benchmark problems for continuum radiative transfer. High optical depths, anisotropic scattering, and polarisation , 2009, 0903.1231.

[130]  K. Ferrière The interstellar environment of our galaxy , 2001, astro-ph/0106359.

[131]  J. Burgers A mathematical model illustrating the theory of turbulence , 1948 .

[132]  J. Scalo,et al.  On the Probability Density Function of Galactic Gas. I. Numerical Simulations and the Significance of the Polytropic Index , 1997, astro-ph/9710075.

[133]  James M. Stone,et al.  Density Probability Distribution Functions in Supersonic Hydrodynamic and MHD Turbulence , 2008, 0806.1525.

[134]  Gilles Chabrier,et al.  Analytical Theory for the Initial Mass Function: CO Clumps and Prestellar Cores , 2008, 0805.0691.

[135]  E. Falgarone,et al.  A signature of the intermittency of interstellar turbulence - The wings of molecular line profiles , 1990 .

[136]  I. Bonnell,et al.  Fragmentation in Molecular Clouds and its connection to the IMF , 2009, 0903.3240.

[137]  A. R. Rivolo,et al.  Mass, luminosity, and line width relations of Galactic molecular clouds , 1987 .

[138]  Paul R. Woodward,et al.  A numerical study of supersonic turbulence , 1992 .

[139]  R. Henriksen On molecular cloud scaling laws and star formation , 1991 .

[140]  Radiative transfer and starless cores , 2004, astro-ph/0407433.

[141]  C. Brunt,et al.  Intrinsic, Observed, and Retrieved Properties of Interstellar Turbulence , 2003 .

[142]  Turbulent Gas Flows in the Rosette and G216-2.5 Molecular Clouds: Assessing Turbulent Fragmentation Descriptions of Star Formation , 2005, astro-ph/0511441.

[143]  Mark S. Miesch,et al.  Statistical Analysis of Turbulence in Molecular Clouds , 1994 .

[144]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[145]  R. Klessen,et al.  Gravitational Collapse in Turbulent Molecular Clouds. II. Magnetohydrodynamical Turbulence , 2000, astro-ph/0009227.

[146]  D. O. Astronomy,et al.  Interstellar Turbulence I: Observations and Processes , 2004, astro-ph/0404451.

[147]  Rainer Grauer,et al.  Density-PDFs and Lagrangian statistics of highly compressible turbulence , 2008 .

[148]  Jr. Fleck,et al.  Scaling Relations for the Turbulent, Non--Self-gravitating, Neutral Component of the Interstellar Medium , 1996 .

[149]  R. Klessen,et al.  Is the scaling of supersonic turbulence universal? , 2008, Physical review letters.

[150]  C. Brunt,et al.  Interstellar Turbulence: I. Retrieval of Velocity Field Statistics , 2000, astro-ph/0011200.

[151]  Ray Tracing for Complex Astrophysical High-opacity Structures , 2006, astro-ph/0603463.

[152]  2MASS wide field extinction maps. I. The Pipe nebula , 2006, astro-ph/0606670.

[153]  On the structure of the turbulent interstellar atomic hydrogen. I- Physical characteristics Influence and nature of turbulence in a thermally bistable flow , 2006, astro-ph/0612778.

[154]  October I Physical Review Letters , 2022 .

[155]  The Mass Spectra of Cores in Turbulent Molecular Clouds and Implications for the Initial Mass Function , 2005, astro-ph/0509591.

[156]  A. Goodman,et al.  Coherent Dense Cores. I. NH3 Observations , 1998 .

[157]  T. Naab,et al.  DRIVING TURBULENCE AND TRIGGERING STAR FORMATION BY IONIZING RADIATION , 2009, 0901.2113.

[158]  R. Klessen,et al.  Gravitational Collapse in Turbulent Molecular Clouds. I. Gasdynamical Turbulence , 1999, astro-ph/9911068.

[159]  R. Klein,et al.  Sub-Alfvénic Nonideal MHD Turbulence Simulations with Ambipolar Diffusion. I. Turbulence Statistics , 2008, 0805.0597.

[160]  Kindler-Rohrborn,et al.  In press , 1994, Molecular carcinogenesis.

[161]  Numerical dissipation and the bottleneck effect in simulations of compressible isotropic turbulence , 2004, astro-ph/0407616.

[162]  Ralf S. Klessen One-Point Probability Distribution Functions of Supersonic Turbulent Flows in Self-gravitating Media , 2000 .

[163]  On the structure of self-gravitating molecular clouds , 2001, astro-ph/0110453.

[164]  Ralf Klessen,et al.  (ACCEPTED FOR PUBLICATION IN APJ) Preprint typeset using L ATEX style emulateapj v. 04/03/99 THE FORMATION OF STELLAR CLUSTERS: MASS SPECTRA FROM TURBULENT MOLECULAR CLOUD , 2001 .