Fair representation by independent sets

For a hypergraph H let β(H) denote the minimal number of edges from H covering V (H). An edge S of H is said to represent fairly (resp. almost fairly) a partition (V1, V2, …, V m ) of V (H) if \(\vert S \cap V _{i}\vert \geqslant \left \lfloor \frac{\vert V _{i}\vert } {\beta (H)} \right \rfloor\) (resp. \(\vert S \cap V _{i}\vert \geqslant \left \lfloor \frac{\vert V _{i}\vert } {\beta (H)} \right \rfloor - 1\)) for all \(i\leqslant m\). In matroids any partition of V (H) can be represented fairly by some independent set. We look for classes of hypergraphs H in which any partition of V (H) can be represented almost fairly by some edge. We show that this is true when H is the set of independent sets in a path, and conjecture that it is true when H is the set of matchings in K n, n . We prove that partitions of E(K n, n ) into three sets can be represented almost fairly. The methods of proofs are topological.

[1]  Roy Meshulam,et al.  Domination numbers and homology , 2003, J. Comb. Theory A.

[2]  N. Alon The linear arboricity of graphs , 1988 .

[3]  Penny E. Haxell,et al.  A condition for matchability in hypergraphs , 1995, Graphs Comb..

[4]  Ron Aharoni,et al.  Special parity of perfect matchings in bipartite graphs , 1990, Discret. Math..

[5]  Ian M. Wanless,et al.  Multipartite Hypergraphs Achieving Equality in Ryser’s Conjecture , 2016, Graphs Comb..

[6]  Guoping Jin,et al.  Complete Subgraphs of r-partite Graphs , 1992, Combinatorics, probability & computing.

[7]  S. Stein TRANSVERSALS OF LATIN SQUARES AND THEIR GENERALIZATIONS , 1975 .

[8]  Ron Holzman,et al.  Cooperative Colorings and Independent Systems of Representatives , 2015, Electron. J. Comb..

[9]  Noga Alon,et al.  Colorings and orientations of graphs , 1992, Comb..

[10]  Michael Stiebitz,et al.  A solution to a colouring problem of P. Erdös , 1992, Discret. Math..

[11]  Ron Aharoni,et al.  Hall's theorem for hypergraphs , 2000, J. Graph Theory.

[12]  Michal Adamaszek,et al.  On a lower bound for the connectivity of the independence complex of a graph , 2011, Discret. Math..

[13]  Bodan Arsovski A proof of snevily’s conjecture , 2011 .

[14]  Noga Alon,et al.  Eigenvalues of K1, k-Free Graphs and the Connectivity of Their Independence Complexes , 2016, J. Graph Theory.

[15]  Chromatic Number and Orientations of Graphs and Signed Graphs , 2019, Taiwanese Journal of Mathematics.

[16]  Ron Aharoni,et al.  Independent systems of representatives in weighted graphs , 2007, Comb..

[17]  STABLE KNESER HYPERGRAPHS AND IDEALS IN N WITH THE NIKODÝM PROPERTY , 2008 .

[18]  Klaas K. Koksma A lower bound for the order of a partial transversal in a latin square , 1969 .

[19]  Gábor Tardos,et al.  Extremal Problems For Transversals In Graphs With Bounded Degree , 2006, Comb..

[20]  László Lovász,et al.  Chessboard Complexes and Matching Complexes , 1994 .

[21]  Raphael Yuster,et al.  Independent transversals in r-partite graphs , 1997, Discret. Math..

[22]  Noga Alon,et al.  Probabilistic methods in coloring and decomposition problems , 1994, Discret. Math..

[23]  N. Alon,et al.  Stable Kneser hypergraphs and ideals in $\mathbb {N}$ with the Nikodym property , 2008 .

[24]  Petra Ostermann Using The Borsuk Ulam Theorem Lectures On Topological Methods In Combinatorics And Geometry , 2016 .

[25]  Roy Meshulam,et al.  The Clique Complex and Hypergraph Matching , 2001, Comb..

[26]  Ding-Zhu Du,et al.  The Hamiltonian property of consecutive-d digraphs , 1993 .

[27]  Pooya Hatami,et al.  A lower bound for the length of a partial transversal in a Latin square , 2008, J. Comb. Theory, Ser. A.

[28]  A. Schrijver,et al.  Vertex-critical subgraphs of Kneser-graphs , 1978 .

[29]  J. Matousek,et al.  Using The Borsuk-Ulam Theorem , 2007 .

[30]  Leslie Hogben,et al.  Combinatorial Matrix Theory , 2013 .