Quantum-state transfer via the ferromagnetic chain in a spatially modulated field

We show that a perfect quantum-state transmission can be realized through a spin chain possessing the commensurate structure of an energy spectrum, which is matched with the corresponding parity. As an exposition of the mirror inversion symmetry discovered by Albanese (e-print quant-ph/0405029), the parity matched commensurability of the energy spectra helps us to present preengineered spin systems for quantum information transmission. Based on these theoretical analyses, we propose a protocol of near-perfect quantum-state transfer by using a ferromagnetic Heisenberg chain with uniform coupling constant, but an external parabolic magnetic field. The numerical results show that the initial Gaussian wave packet in this system with optimal field distribution can be reshaped near perfectly over a longer distance.